Hybridní technika slepé separace negaussovských a časově korelovaných zdrojů s využitím vícenásobných komponent
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00306563" target="_blank" >RIV/67985556:_____/08:00306563 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24220/08:#0000868
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach
Popis výsledku v původním jazyce
Blind inversion of a linear and instantaneous mixture of source signals is a problem often encountered in many signal processing applications. Efficient FastICA (EFICA) offers an asymptotically optimal solution to this problem when all of the sources obey a generalized Gaussian distribution, at most one of them is Gaussian, and each is independent and identically distributed in time. Likewise, Weights-Adjusted Second Order Blind Identification (WASOBI) is asymptotically optimal when all the sources areGaussian and can be modeled as Autoregressive (AR) processes with distinct spectra. Nevertheless, real-life mixtures are likely to contain both Gaussian AR and non-Gaussian iid sources, rendering WASOBI and EFICA severely sub-optimal. In this paper we propose a novel scheme for combining the strengths of EFICA and WASOBI in order to deal with such hybrid mixtures. Simulations show that our approach outperforms competing algorithms designed for separating similar mixtures.
Název v anglickém jazyce
A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach
Popis výsledku anglicky
Blind inversion of a linear and instantaneous mixture of source signals is a problem often encountered in many signal processing applications. Efficient FastICA (EFICA) offers an asymptotically optimal solution to this problem when all of the sources obey a generalized Gaussian distribution, at most one of them is Gaussian, and each is independent and identically distributed in time. Likewise, Weights-Adjusted Second Order Blind Identification (WASOBI) is asymptotically optimal when all the sources areGaussian and can be modeled as Autoregressive (AR) processes with distinct spectra. Nevertheless, real-life mixtures are likely to contain both Gaussian AR and non-Gaussian iid sources, rendering WASOBI and EFICA severely sub-optimal. In this paper we propose a novel scheme for combining the strengths of EFICA and WASOBI in order to deal with such hybrid mixtures. Simulations show that our approach outperforms competing algorithms designed for separating similar mixtures.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Networks
ISSN
1045-9227
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
421-430
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—