Blind Separation of Piecewise Stationary NonGaussian Sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F09%3A00332915" target="_blank" >RIV/67985556:_____/09:00332915 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24220/09:#0001338
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Blind Separation of Piecewise Stationary NonGaussian Sources
Popis výsledku v původním jazyce
We address Independent Component Analysis (ICA) of piecewise stationary and nonGaussian signals and propose a novel ICA algorithm called Block EFICA that is based on this generalized model of signals. The method is a further extension of the popular nonGaussianity-based FastICA algorithm and of its recently optimized variant called EFICA. In contrast to these methods, Block EFICA is developed to effectively exploit varying distribution of signals, thus, also their varying variance in time (nonstationarity) or, more precisely, in time-intervals (piecewise stationarity). In theory, the accuracy of the method asymptotically approaches Cramer-Rao lower bound (CRLB) under common assumptions when variance of the signals is constant. On the other hand, the performance is practically close to the CLRB even when variance of the signals is changing.
Název v anglickém jazyce
Blind Separation of Piecewise Stationary NonGaussian Sources
Popis výsledku anglicky
We address Independent Component Analysis (ICA) of piecewise stationary and nonGaussian signals and propose a novel ICA algorithm called Block EFICA that is based on this generalized model of signals. The method is a further extension of the popular nonGaussianity-based FastICA algorithm and of its recently optimized variant called EFICA. In contrast to these methods, Block EFICA is developed to effectively exploit varying distribution of signals, thus, also their varying variance in time (nonstationarity) or, more precisely, in time-intervals (piecewise stationarity). In theory, the accuracy of the method asymptotically approaches Cramer-Rao lower bound (CRLB) under common assumptions when variance of the signals is constant. On the other hand, the performance is practically close to the CLRB even when variance of the signals is changing.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal Processing
ISSN
0165-1684
e-ISSN
—
Svazek periodika
89
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—