Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neřízená segmentace textur

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00317725" target="_blank" >RIV/67985556:_____/08:00317725 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61384399:31160/08:00030694

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised Texture Segmentation

  • Popis výsledku v původním jazyce

    Segmentation is the fundamental process which partitions a data space into meaningful salient regions. Image segmentation essentially affects the overall performance of any automated image analysis system thus its quality is of the utmost importance. Image regions, homogeneous with respect to some usually textural or colour measure, which result from a segmentation algorithm are analysed in subsequent interpretation steps. Several new unsupervised multispectral texture segmentation methods based on underlying Markovian spatial models with unknown number of classes are presented in the chapter. The performances of the presented methods are extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.

  • Název v anglickém jazyce

    Unsupervised Texture Segmentation

  • Popis výsledku anglicky

    Segmentation is the fundamental process which partitions a data space into meaningful salient regions. Image segmentation essentially affects the overall performance of any automated image analysis system thus its quality is of the utmost importance. Image regions, homogeneous with respect to some usually textural or colour measure, which result from a segmentation algorithm are analysed in subsequent interpretation steps. Several new unsupervised multispectral texture segmentation methods based on underlying Markovian spatial models with unknown number of classes are presented in the chapter. The performances of the presented methods are extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Pattern Recognition

  • ISBN

    978-953-7619-24-4

  • Počet stran výsledku

    22

  • Strana od-do

  • Počet stran knihy

    536

  • Název nakladatele

    In-Tech

  • Místo vydání

    Vienna

  • Kód UT WoS kapitoly