Neřízená segmentace textur
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00317725" target="_blank" >RIV/67985556:_____/08:00317725 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31160/08:00030694
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised Texture Segmentation
Popis výsledku v původním jazyce
Segmentation is the fundamental process which partitions a data space into meaningful salient regions. Image segmentation essentially affects the overall performance of any automated image analysis system thus its quality is of the utmost importance. Image regions, homogeneous with respect to some usually textural or colour measure, which result from a segmentation algorithm are analysed in subsequent interpretation steps. Several new unsupervised multispectral texture segmentation methods based on underlying Markovian spatial models with unknown number of classes are presented in the chapter. The performances of the presented methods are extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.
Název v anglickém jazyce
Unsupervised Texture Segmentation
Popis výsledku anglicky
Segmentation is the fundamental process which partitions a data space into meaningful salient regions. Image segmentation essentially affects the overall performance of any automated image analysis system thus its quality is of the utmost importance. Image regions, homogeneous with respect to some usually textural or colour measure, which result from a segmentation algorithm are analysed in subsequent interpretation steps. Several new unsupervised multispectral texture segmentation methods based on underlying Markovian spatial models with unknown number of classes are presented in the chapter. The performances of the presented methods are extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Pattern Recognition
ISBN
978-953-7619-24-4
Počet stran výsledku
22
Strana od-do
—
Počet stran knihy
536
Název nakladatele
In-Tech
Místo vydání
Vienna
Kód UT WoS kapitoly
—