Segmentation of Visual Images by Sequential Extracting Homogeneous Texture Areas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534805" target="_blank" >RIV/67985807:_____/20:00534805 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0312972" target="_blank" >http://hdl.handle.net/11104/0312972</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4236/jsip.2020.114005" target="_blank" >10.4236/jsip.2020.114005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Segmentation of Visual Images by Sequential Extracting Homogeneous Texture Areas
Popis výsledku v původním jazyce
The purpose of the research is to develop a universal algorithm for partial texture segmentation of any visual images. The main peculiarity of the proposed segmentation procedure is the extraction of only homogeneous fine-grained texture segments present in the images. At first, an initial seed point is found for the largest and most homogeneous segment of the image. This initial seed point of the segment is expanded using a region growing method. Other texture segments of the image are extracted analogously in turn. At the second stage, the procedure of merging the extracted segments belonging to the same texture class is performed. Then, the detected texture segments are input to a neural network with competitive layers which accomplishes more accurate delineation of the shapes of the extracted texture segments. The proposed segmentation procedure is fully unsupervised, i.e., it does not use any a priori knowledge on either the type of textures or the number of texture segments in the image. The research results in development of the segmentation algorithm realized as a computer program tested in a series of experiments that demonstrate its efficiency on grayscale natural scenes.
Název v anglickém jazyce
Segmentation of Visual Images by Sequential Extracting Homogeneous Texture Areas
Popis výsledku anglicky
The purpose of the research is to develop a universal algorithm for partial texture segmentation of any visual images. The main peculiarity of the proposed segmentation procedure is the extraction of only homogeneous fine-grained texture segments present in the images. At first, an initial seed point is found for the largest and most homogeneous segment of the image. This initial seed point of the segment is expanded using a region growing method. Other texture segments of the image are extracted analogously in turn. At the second stage, the procedure of merging the extracted segments belonging to the same texture class is performed. Then, the detected texture segments are input to a neural network with competitive layers which accomplishes more accurate delineation of the shapes of the extracted texture segments. The proposed segmentation procedure is fully unsupervised, i.e., it does not use any a priori knowledge on either the type of textures or the number of texture segments in the image. The research results in development of the segmentation algorithm realized as a computer program tested in a series of experiments that demonstrate its efficiency on grayscale natural scenes.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Signal and Information Processing
ISSN
2159-4465
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
75-102
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—