Extraction of Homogeneous Fine-Grained Texture Segments in Visual Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00478807" target="_blank" >RIV/67985807:_____/17:00478807 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14311/NNW.2017.27.024" target="_blank" >http://dx.doi.org/10.14311/NNW.2017.27.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2017.27.024" target="_blank" >10.14311/NNW.2017.27.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extraction of Homogeneous Fine-Grained Texture Segments in Visual Images
Popis výsledku v původním jazyce
A new heuristic algorithm is proposed for extraction of all homogeneous fine-grained texture segments present in any visual image. The segments extracted by this algorithm should comply with human understanding of homogeneous fine-grained areas. The algorithm sequentially extracts segments from more homogeneous to less homogeneous ones. The algorithm belongs to a region growing approach. So, for each segment, an initial seed point of this segment is found. Then, from this initial pixel, the segment begins to expand occupying its adjacent neighborhoods. This procedure of expansion of the segment continues till the segment reaches its borders. The algorithm examines neighboring pixels using texture features extracted in the image by means of a set of texture windows. The segmentation process terminates when the image contains no more sizable homogeneous segments. The segmentation procedure is fully unsupervised, i.e., it does not use a priori knowledge on either the type of textures or the number of texture segments in the image. Using black and white natural scenes, a series of experiments demonstrates efficiency of the algorithm in extraction of homogeneous fine-grained texture segments and the segmentation looks reasonable ”from a human point of view”.
Název v anglickém jazyce
Extraction of Homogeneous Fine-Grained Texture Segments in Visual Images
Popis výsledku anglicky
A new heuristic algorithm is proposed for extraction of all homogeneous fine-grained texture segments present in any visual image. The segments extracted by this algorithm should comply with human understanding of homogeneous fine-grained areas. The algorithm sequentially extracts segments from more homogeneous to less homogeneous ones. The algorithm belongs to a region growing approach. So, for each segment, an initial seed point of this segment is found. Then, from this initial pixel, the segment begins to expand occupying its adjacent neighborhoods. This procedure of expansion of the segment continues till the segment reaches its borders. The algorithm examines neighboring pixels using texture features extracted in the image by means of a set of texture windows. The segmentation process terminates when the image contains no more sizable homogeneous segments. The segmentation procedure is fully unsupervised, i.e., it does not use a priori knowledge on either the type of textures or the number of texture segments in the image. Using black and white natural scenes, a series of experiments demonstrates efficiency of the algorithm in extraction of homogeneous fine-grained texture segments and the segmentation looks reasonable ”from a human point of view”.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
31
Strana od-do
447-477
Kód UT WoS článku
000416417400001
EID výsledku v databázi Scopus
2-s2.0-85033377165