A geometric view on learning Bayesian network structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F10%3A00342804" target="_blank" >RIV/67985556:_____/10:00342804 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31160/10:00036201
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A geometric view on learning Bayesian network structures
Popis výsledku v původním jazyce
Basic idea of an algebraic approach to learning Bayesian network (BN) structures is to represent every BN structure by a certain (uniquely determined) vector, called a standard imset. The main result of the paper is that the set of standard imsets is theset of vertices of a certain polytope. Motivated by the geometric view, we introduce the concept of the geometric neighborhood for standard imsets, and, consequently, for BN structures. Then we show that it always includes the inclusion neighborhood}, which was introduced earlier in connection with the GES algorithm. The third result is that the global optimum of an affine function over the polytope coincides with the local optimum relative to the geometric neighborhood. The geometric neighborhood in the case of three variables is described and shown to differ from the inclusion neighborhood. This leads to a simple example of the failure of the GES algorithm if data are not ``generated" from a perfectly Markovian distribution.
Název v anglickém jazyce
A geometric view on learning Bayesian network structures
Popis výsledku anglicky
Basic idea of an algebraic approach to learning Bayesian network (BN) structures is to represent every BN structure by a certain (uniquely determined) vector, called a standard imset. The main result of the paper is that the set of standard imsets is theset of vertices of a certain polytope. Motivated by the geometric view, we introduce the concept of the geometric neighborhood for standard imsets, and, consequently, for BN structures. Then we show that it always includes the inclusion neighborhood}, which was introduced earlier in connection with the GES algorithm. The third result is that the global optimum of an affine function over the polytope coincides with the local optimum relative to the geometric neighborhood. The geometric neighborhood in the case of three variables is described and shown to differ from the inclusion neighborhood. This leads to a simple example of the failure of the GES algorithm if data are not ``generated" from a perfectly Markovian distribution.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000278692300009
EID výsledku v databázi Scopus
—