Polyhedral approaches to learning Bayesian networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00473188" target="_blank" >RIV/67985556:_____/17:00473188 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1090/conm/685/13751" target="_blank" >http://dx.doi.org/10.1090/conm/685/13751</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/conm/685/13751" target="_blank" >10.1090/conm/685/13751</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polyhedral approaches to learning Bayesian networks
Popis výsledku v původním jazyce
Learning Bayesian network structure is the NP-hard task of finding a directed acyclic graph that best fits real data. Two integer vector encodings exist – family variable and characteristic imset – which model the solution space of BN structure. Each encoding yields a polytope, the family variable and characteristic imset polytopes respectively. It has been shown that learning BN structure using a decomposable and score equivalent scoring criteria (such as BIC) is equivalent to optimizing a linear function over either the family-variable or characteristic imset polytope. This monograph is primarily intended for readers already familiar with BN but not familiar with polyhedral approaches to learning BN. Thus, this monograph focuses on the family-variable and characteristic imset polytopes, their known faces and facets, and more importantly, deep connections between their faces and facets. Specifically that many of the faces of the family variable polytope are superfluous when learning BN structure. Sufficient background on Bayesian networks, graphs, and polytopes are provided. The currently known faces and facets of each polytope are described. Deep connections between many of the faces and facets of family-variable and characteristic polytope are then summarized from recent results. Lastly, a brief history and background on practical approaches to learning BN structure using integer linear programming over both polytopes is provided.
Název v anglickém jazyce
Polyhedral approaches to learning Bayesian networks
Popis výsledku anglicky
Learning Bayesian network structure is the NP-hard task of finding a directed acyclic graph that best fits real data. Two integer vector encodings exist – family variable and characteristic imset – which model the solution space of BN structure. Each encoding yields a polytope, the family variable and characteristic imset polytopes respectively. It has been shown that learning BN structure using a decomposable and score equivalent scoring criteria (such as BIC) is equivalent to optimizing a linear function over either the family-variable or characteristic imset polytope. This monograph is primarily intended for readers already familiar with BN but not familiar with polyhedral approaches to learning BN. Thus, this monograph focuses on the family-variable and characteristic imset polytopes, their known faces and facets, and more importantly, deep connections between their faces and facets. Specifically that many of the faces of the family variable polytope are superfluous when learning BN structure. Sufficient background on Bayesian networks, graphs, and polytopes are provided. The currently known faces and facets of each polytope are described. Deep connections between many of the faces and facets of family-variable and characteristic polytope are then summarized from recent results. Lastly, a brief history and background on practical approaches to learning BN structure using integer linear programming over both polytopes is provided.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-20012S" target="_blank" >GA13-20012S: Struktury podmíněné nezávislosti: algebraické a geometrické metody</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Algebraic and Geometric Methods in Discrete Mathematics
ISBN
978-1-4704-3743-5
Počet stran výsledku
34
Strana od-do
155-188
Počet stran knihy
277
Název nakladatele
American Mathematical Society
Místo vydání
Providence
Kód UT WoS kapitoly
000403116600007