Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polyhedral approaches to learning Bayesian networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00473188" target="_blank" >RIV/67985556:_____/17:00473188 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1090/conm/685/13751" target="_blank" >http://dx.doi.org/10.1090/conm/685/13751</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/conm/685/13751" target="_blank" >10.1090/conm/685/13751</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polyhedral approaches to learning Bayesian networks

  • Popis výsledku v původním jazyce

    Learning Bayesian network structure is the NP-hard task of finding a directed acyclic graph that best fits real data. Two integer vector encodings exist – family variable and characteristic imset – which model the solution space of BN structure. Each encoding yields a polytope, the family variable and characteristic imset polytopes respectively. It has been shown that learning BN structure using a decomposable and score equivalent scoring criteria (such as BIC) is equivalent to optimizing a linear function over either the family-variable or characteristic imset polytope. This monograph is primarily intended for readers already familiar with BN but not familiar with polyhedral approaches to learning BN. Thus, this monograph focuses on the family-variable and characteristic imset polytopes, their known faces and facets, and more importantly, deep connections between their faces and facets. Specifically that many of the faces of the family variable polytope are superfluous when learning BN structure. Sufficient background on Bayesian networks, graphs, and polytopes are provided. The currently known faces and facets of each polytope are described. Deep connections between many of the faces and facets of family-variable and characteristic polytope are then summarized from recent results. Lastly, a brief history and background on practical approaches to learning BN structure using integer linear programming over both polytopes is provided.

  • Název v anglickém jazyce

    Polyhedral approaches to learning Bayesian networks

  • Popis výsledku anglicky

    Learning Bayesian network structure is the NP-hard task of finding a directed acyclic graph that best fits real data. Two integer vector encodings exist – family variable and characteristic imset – which model the solution space of BN structure. Each encoding yields a polytope, the family variable and characteristic imset polytopes respectively. It has been shown that learning BN structure using a decomposable and score equivalent scoring criteria (such as BIC) is equivalent to optimizing a linear function over either the family-variable or characteristic imset polytope. This monograph is primarily intended for readers already familiar with BN but not familiar with polyhedral approaches to learning BN. Thus, this monograph focuses on the family-variable and characteristic imset polytopes, their known faces and facets, and more importantly, deep connections between their faces and facets. Specifically that many of the faces of the family variable polytope are superfluous when learning BN structure. Sufficient background on Bayesian networks, graphs, and polytopes are provided. The currently known faces and facets of each polytope are described. Deep connections between many of the faces and facets of family-variable and characteristic polytope are then summarized from recent results. Lastly, a brief history and background on practical approaches to learning BN structure using integer linear programming over both polytopes is provided.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-20012S" target="_blank" >GA13-20012S: Struktury podmíněné nezávislosti: algebraické a geometrické metody</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Algebraic and Geometric Methods in Discrete Mathematics

  • ISBN

    978-1-4704-3743-5

  • Počet stran výsledku

    34

  • Strana od-do

    155-188

  • Počet stran knihy

    277

  • Název nakladatele

    American Mathematical Society

  • Místo vydání

    Providence

  • Kód UT WoS kapitoly

    000403116600007