Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning Bayesian network structure: towards the essential graph by integer linear programming tools

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00427002" target="_blank" >RIV/67985556:_____/14:00427002 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.ijar.2013.09.016" target="_blank" >http://dx.doi.org/10.1016/j.ijar.2013.09.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijar.2013.09.016" target="_blank" >10.1016/j.ijar.2013.09.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning Bayesian network structure: towards the essential graph by integer linear programming tools

  • Popis výsledku v původním jazyce

    The basic idea of the geometric approach to learning a Bayesian network (BN) structure is to represent every BN structure by a certain vector. If the vector representative is chosen properly, it allows one to re-formulate the task of finding the global maximum of a score over BN structures as an integer linear programming (ILP) problem. Such a suitable zero-one vector representative is the characteristic imset, introduced by Studený, Hemmecke and Lindner in 2010, in the proceedings of the 5th PGM workshop. In this paper, extensions of characteristic imsets are considered which additionally encode chain graphs without flags equivalent to acyclic directed graphs. The main contribution is a polyhedral description of the respective domain of the ILP problem, that is, by means of a set of linear inequalities.

  • Název v anglickém jazyce

    Learning Bayesian network structure: towards the essential graph by integer linear programming tools

  • Popis výsledku anglicky

    The basic idea of the geometric approach to learning a Bayesian network (BN) structure is to represent every BN structure by a certain vector. If the vector representative is chosen properly, it allows one to re-formulate the task of finding the global maximum of a score over BN structures as an integer linear programming (ILP) problem. Such a suitable zero-one vector representative is the characteristic imset, introduced by Studený, Hemmecke and Lindner in 2010, in the proceedings of the 5th PGM workshop. In this paper, extensions of characteristic imsets are considered which additionally encode chain graphs without flags equivalent to acyclic directed graphs. The main contribution is a polyhedral description of the respective domain of the ILP problem, that is, by means of a set of linear inequalities.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-20012S" target="_blank" >GA13-20012S: Struktury podmíněné nezávislosti: algebraické a geometrické metody</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Approximate Reasoning

  • ISSN

    0888-613X

  • e-ISSN

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    1043-1071

  • Kód UT WoS článku

    000334087400009

  • EID výsledku v databázi Scopus