Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Empirical Estimates in Stochastic Optimization via Distribution Tails

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F10%3A00346165" target="_blank" >RIV/67985556:_____/10:00346165 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Empirical Estimates in Stochastic Optimization via Distribution Tails

  • Popis výsledku v původním jazyce

    Classical optimization problems depending on a probability measure belong mostly to nonlinear deterministic problems that are, from the numerical point of view, relatively complicated. On the other hand, these problems fulfil very often assumptions giving a possibility to replace the ``underlying" probability measure by an empirical one to obtain ``good" empirical estimates of the optimal value and the optimal solution. Convergence rate of these estimates have been studied mostly for ``underlying" probability measure with suitable (thin) tails. However it is known that probability distributions with heavy tails better correspond to many economic problems. The paper focus on distributions with finite first moments and heavy tails. The introduced assertions are based on the stability results corresponding to the Wasserstein metric with an ``underlying" l_1 norm and empirical quantiles convergence.

  • Název v anglickém jazyce

    Empirical Estimates in Stochastic Optimization via Distribution Tails

  • Popis výsledku anglicky

    Classical optimization problems depending on a probability measure belong mostly to nonlinear deterministic problems that are, from the numerical point of view, relatively complicated. On the other hand, these problems fulfil very often assumptions giving a possibility to replace the ``underlying" probability measure by an empirical one to obtain ``good" empirical estimates of the optimal value and the optimal solution. Convergence rate of these estimates have been studied mostly for ``underlying" probability measure with suitable (thin) tails. However it is known that probability distributions with heavy tails better correspond to many economic problems. The paper focus on distributions with finite first moments and heavy tails. The introduced assertions are based on the stability results corresponding to the Wasserstein metric with an ``underlying" l_1 norm and empirical quantiles convergence.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Svazek periodika

    46

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000280425000011

  • EID výsledku v databázi Scopus