Marginalized Particle Filter for Sensorless Control of PMSM Drives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00383715" target="_blank" >RIV/67985556:_____/12:00383715 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Marginalized Particle Filter for Sensorless Control of PMSM Drives
Popis výsledku v původním jazyce
Marginalized particle filter is a stochastic filter combining Kalman filters with particle filters. It decomposes the model into linear and nonlinear part and applies the Kalman filter for the former and the particle filter for the latter. Its application in sensorless control of permanent magnet synchronous motor (PMSM) drives is based on separate treatment of the state variables: the rotor position is represented by a set of samples (particles), and the rotor speed is estimated by the Kalman filters associated with each sample. In effect, this allows to represent accurately the inherent non-Gaussianity and nonlinearity of the model. We show that the resulting filter is capable to estimate the rotor position in the full speed range, including the standstill. Analysis of the filter performance is presented on open-loop off-line analysis of data recorded on a drive prototype. Execution time of optimized implementation of the algorithm for six particles in DSP is comparable to that of th
Název v anglickém jazyce
Marginalized Particle Filter for Sensorless Control of PMSM Drives
Popis výsledku anglicky
Marginalized particle filter is a stochastic filter combining Kalman filters with particle filters. It decomposes the model into linear and nonlinear part and applies the Kalman filter for the former and the particle filter for the latter. Its application in sensorless control of permanent magnet synchronous motor (PMSM) drives is based on separate treatment of the state variables: the rotor position is represented by a set of samples (particles), and the rotor speed is estimated by the Kalman filters associated with each sample. In effect, this allows to represent accurately the inherent non-Gaussianity and nonlinearity of the model. We show that the resulting filter is capable to estimate the rotor position in the full speed range, including the standstill. Analysis of the filter performance is presented on open-loop off-line analysis of data recorded on a drive prototype. Execution time of optimized implementation of the algorithm for six particles in DSP is comparable to that of th
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F11%2F0437" target="_blank" >GAP102/11/0437: Regulace a identifikace parametrů střídavých elektrických pohonů v kritických provozních stavech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 38th Annual Conference of the IEEE Industrial Electronics Society
ISBN
978-1-4673-2419-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE Industrial Electronics Society
Místo vydání
Montral
Místo konání akce
Montreal
Datum konání akce
25. 10. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—