Can we Improve Understanding of the Financial Market Dependencies in the Crisis by their Decomposition?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00396003" target="_blank" >RIV/67985556:_____/13:00396003 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can we Improve Understanding of the Financial Market Dependencies in the Crisis by their Decomposition?
Popis výsledku v původním jazyce
Study of the financial market dependencies have become one of the most active and successful areas of research in the time series econometrics and economic forecasting during the recent decades. Current financial crisis have shown that understanding of the dependencies in the markets is crucial and it has even boosted the interest of researchers. this work brings new theoretical framework for the realized covariation estimation gener- alizing the current knowledge and bringing the estimation to the time-frequency domain for the first time. Usage of wavelets allows us to decompose the correlation measures into several investment horizons. our estimator is moreover able to separate individual jumps, co-jumps and true covariation from the high frequency data, thus brings better understanding of the dependence. the results have crucial impact on the portfolio diver- sification especially in the crisis years as they point to the strong dynamic relationships at various investment horizons.
Název v anglickém jazyce
Can we Improve Understanding of the Financial Market Dependencies in the Crisis by their Decomposition?
Popis výsledku anglicky
Study of the financial market dependencies have become one of the most active and successful areas of research in the time series econometrics and economic forecasting during the recent decades. Current financial crisis have shown that understanding of the dependencies in the markets is crucial and it has even boosted the interest of researchers. this work brings new theoretical framework for the realized covariation estimation gener- alizing the current knowledge and bringing the estimation to the time-frequency domain for the first time. Usage of wavelets allows us to decompose the correlation measures into several investment horizons. our estimator is moreover able to separate individual jumps, co-jumps and true covariation from the high frequency data, thus brings better understanding of the dependence. the results have crucial impact on the portfolio diver- sification especially in the crisis years as they point to the strong dynamic relationships at various investment horizons.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACTA VŠFS
ISSN
1802-792X
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
25
Strana od-do
6-30
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—