Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform

  • Popis výsledku v původním jazyce

    This study proposes a novel near infrared face recognition algorithm based on a combination of both local and global features. In this method local features are extracted from partitioned images by means of undecimated discrete wavelet transform (UDWT) and global features are extracted from the whole face image by means of Zernike moments (ZMs). Spectral regression discriminant analysis (SRDA) is then used to reduce the dimension of features. In order to make full use of global and local features and further improve the performance, a decision fusion technique is employed by using weighted sum rule. Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that the proposed method has superior overall performance compared to some other methods in the presence of facial expressions, eyeglasses, head rotation, image noise and misalignments. Moreover its computational time is acceptable for on-line face recognition systems.

  • Název v anglickém jazyce

    Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform

  • Popis výsledku anglicky

    This study proposes a novel near infrared face recognition algorithm based on a combination of both local and global features. In this method local features are extracted from partitioned images by means of undecimated discrete wavelet transform (UDWT) and global features are extracted from the whole face image by means of Zernike moments (ZMs). Spectral regression discriminant analysis (SRDA) is then used to reduce the dimension of features. In order to make full use of global and local features and further improve the performance, a decision fusion technique is employed by using weighted sum rule. Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that the proposed method has superior overall performance compared to some other methods in the presence of facial expressions, eyeglasses, head rotation, image noise and misalignments. Moreover its computational time is acceptable for on-line face recognition systems.

Klasifikace

  • Druh

    Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Digital Signal Processing

  • ISSN

    1051-2004

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    27

  • Strana od-do

    13-27

  • Kód UT WoS článku

    000337267200002

  • EID výsledku v databázi Scopus

Základní informace

Druh výsledku

Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

Jx

CEP

JD - Využití počítačů, robotika a její aplikace

Rok uplatnění

2014