Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00428536" target="_blank" >RIV/67985556:_____/14:00428536 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.dsp.2014.04.008" target="_blank" >http://dx.doi.org/10.1016/j.dsp.2014.04.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dsp.2014.04.008" target="_blank" >10.1016/j.dsp.2014.04.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform
Popis výsledku v původním jazyce
This study proposes a novel near infrared face recognition algorithm based on a combination of both local and global features. In this method local features are extracted from partitioned images by means of undecimated discrete wavelet transform (UDWT) and global features are extracted from the whole face image by means of Zernike moments (ZMs). Spectral regression discriminant analysis (SRDA) is then used to reduce the dimension of features. In order to make full use of global and local features and further improve the performance, a decision fusion technique is employed by using weighted sum rule. Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that the proposed method has superior overall performance compared to some other methods in the presence of facial expressions, eyeglasses, head rotation, image noise and misalignments. Moreover its computational time is acceptable for on-line face recognition systems.
Název v anglickém jazyce
Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform
Popis výsledku anglicky
This study proposes a novel near infrared face recognition algorithm based on a combination of both local and global features. In this method local features are extracted from partitioned images by means of undecimated discrete wavelet transform (UDWT) and global features are extracted from the whole face image by means of Zernike moments (ZMs). Spectral regression discriminant analysis (SRDA) is then used to reduce the dimension of features. In order to make full use of global and local features and further improve the performance, a decision fusion technique is employed by using weighted sum rule. Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that the proposed method has superior overall performance compared to some other methods in the presence of facial expressions, eyeglasses, head rotation, image noise and misalignments. Moreover its computational time is acceptable for on-line face recognition systems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F11%2F1552" target="_blank" >GAP103/11/1552: Momenty a momentové invarianty v analýze obrazu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Digital Signal Processing
ISSN
1051-2004
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
27
Strana od-do
13-27
Kód UT WoS článku
000337267200002
EID výsledku v databázi Scopus
—