Complement component face space for 3D face recognition from range images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017289" target="_blank" >RIV/62690094:18450/21:50017289 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10489-020-02012-8" target="_blank" >https://link.springer.com/article/10.1007/s10489-020-02012-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10489-020-02012-8" target="_blank" >10.1007/s10489-020-02012-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complement component face space for 3D face recognition from range images
Popis výsledku v původním jazyce
This paper proposes a mathematical model for decomposing a range face image into four basic components (named ‘complement components’) in conjunction with a simple approach for data-level fusion to generate thirty-six additional hybrid components. These forty component faces composing a new face image space called the ‘complement component face space.’ The main challenge of this work was to extract relevant features from the vast face space. Features are extracted from the four basic components and four selected hybrid components using singular value decomposition. To introduce diversity, the extracted feature vectors are fused by applying the crossover operation of the genetic algorithm using a Hamming distance-based fitness measure. Particle swarm optimization-based feature selection is employed on the fused features to discard redundant feature values and to maximize the face recognition performance. The recognition performances of the proposed feature set with a support vector machine-based classifier on three accessible and well-known 3D face databases, namely, Frav3D, Bosphorus, and Texas3D, show significant improvements over those achieved by state-of-the-art methods. This work also studies the feasibility of utilizing the component images in the complement component face space for data augmentation in convolutional neural network (CNN)-based frameworks. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
Complement component face space for 3D face recognition from range images
Popis výsledku anglicky
This paper proposes a mathematical model for decomposing a range face image into four basic components (named ‘complement components’) in conjunction with a simple approach for data-level fusion to generate thirty-six additional hybrid components. These forty component faces composing a new face image space called the ‘complement component face space.’ The main challenge of this work was to extract relevant features from the vast face space. Features are extracted from the four basic components and four selected hybrid components using singular value decomposition. To introduce diversity, the extracted feature vectors are fused by applying the crossover operation of the genetic algorithm using a Hamming distance-based fitness measure. Particle swarm optimization-based feature selection is employed on the fused features to discard redundant feature values and to maximize the face recognition performance. The recognition performances of the proposed feature set with a support vector machine-based classifier on three accessible and well-known 3D face databases, namely, Frav3D, Bosphorus, and Texas3D, show significant improvements over those achieved by state-of-the-art methods. This work also studies the feasibility of utilizing the component images in the complement component face space for data augmentation in convolutional neural network (CNN)-based frameworks. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Intelligence
ISSN
0924-669X
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
2500-2517
Kód UT WoS článku
000642226300002
EID výsledku v databázi Scopus
2-s2.0-85095615560