Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00559878" target="_blank" >RIV/67985556:_____/22:00559878 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31160/22:00058809
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/15/2721" target="_blank" >https://www.mdpi.com/2227-7390/10/15/2721</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10152721" target="_blank" >10.3390/math10152721</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
Popis výsledku v původním jazyce
Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far. however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face image datasets, ORL and FEI. Different state-of-the-art face recognition methods were compared with the proposed method in order to evaluate its accuracy. We demonstrate that the proposed method achieves the highest recognition rate in different considered scenarios. Based on the obtained results, it can be seen that the proposed method is robust against noise and significantly outperforms previous approaches in terms of speed.
Název v anglickém jazyce
Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
Popis výsledku anglicky
Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far. however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face image datasets, ORL and FEI. Different state-of-the-art face recognition methods were compared with the proposed method in order to evaluate its accuracy. We demonstrate that the proposed method achieves the highest recognition rate in different considered scenarios. Based on the obtained results, it can be seen that the proposed method is robust against noise and significantly outperforms previous approaches in terms of speed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03921S" target="_blank" >GA21-03921S: Inverzní problémy ve zpracování obrazu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
10
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
2721
Kód UT WoS článku
000839688200001
EID výsledku v databázi Scopus
2-s2.0-85136800613