Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00431090" target="_blank" >RIV/67985556:_____/15:00431090 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TMI.2014.2352791" target="_blank" >http://dx.doi.org/10.1109/TMI.2014.2352791</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TMI.2014.2352791" target="_blank" >10.1109/TMI.2014.2352791</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors
Popis výsledku v původním jazyce
A common problem of imaging three-dimensional objects into image plane is superposition of the projected structures. In dynamic imaging, projection overlaps of organs and tissues complicate extraction of signals specific to individual structures with different dynamics. The problem manifests itself also in dynamic tomography as tissue mixtures are present in voxels. Separation of signals specific to dynamic structures belongs to the category of blind source separation. It is an underdetermined problem with many possible solutions. Existing separation methods select the solution that best matches their additional assumptions on the source model. We propose a novel blind source separation method based on probabilistic model of dynamic image sequences assuming each source dynamics as convolution of an input function and a source specific kernel (modeling organ impulse response or retention function). These assumptions are formalized as a Bayesian model with hierarchical prior and solved b
Název v anglickém jazyce
Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors
Popis výsledku anglicky
A common problem of imaging three-dimensional objects into image plane is superposition of the projected structures. In dynamic imaging, projection overlaps of organs and tissues complicate extraction of signals specific to individual structures with different dynamics. The problem manifests itself also in dynamic tomography as tissue mixtures are present in voxels. Separation of signals specific to dynamic structures belongs to the category of blind source separation. It is an underdetermined problem with many possible solutions. Existing separation methods select the solution that best matches their additional assumptions on the source model. We propose a novel blind source separation method based on probabilistic model of dynamic image sequences assuming each source dynamics as convolution of an input function and a source specific kernel (modeling organ impulse response or retention function). These assumptions are formalized as a Bayesian model with hierarchical prior and solved b
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-29225S" target="_blank" >GA13-29225S: Slepá dekonvoluce obrazu v limitních podmínkách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Medical Imaging
ISSN
0278-0062
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
258-266
Kód UT WoS článku
000346975900024
EID výsledku v databázi Scopus
2-s2.0-84937560793