Kinetic Modeling of the Dynamic PET Brain Data Using Blind Source Separation Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00221052" target="_blank" >RIV/68407700:21340/14:00221052 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/14:00433424
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kinetic Modeling of the Dynamic PET Brain Data Using Blind Source Separation Methods
Popis výsledku v původním jazyce
Image-based definition of regions of interest is a typical prerequisite step for estimation of time-activity curves in dynamic positron emission tomography (PET). This procedure is done manually by a human operator and therefore suffers from subjective errors. Another such problem is to estimate the input function. It can be measured from arterial blood or it can be searched for a vascular structure on the images which is hard to be done, unreliable, and often impossible. In this study, we focus on blind source separation methods with no needs of manual interaction. Recently, we developed sparse blind source separation and deconvolution (S-BSS-vecDC) method for separation of original sources from dynamic medical data based on probability modeling and Variational Bayes approximation methodology. We apply the methods on dynamic brain PET data and application and comparison of our S-BSS-vecDC algorithm with those of similar assumptions are given. The S-BSS-vecDC algorithm is publicly avai
Název v anglickém jazyce
Kinetic Modeling of the Dynamic PET Brain Data Using Blind Source Separation Methods
Popis výsledku anglicky
Image-based definition of regions of interest is a typical prerequisite step for estimation of time-activity curves in dynamic positron emission tomography (PET). This procedure is done manually by a human operator and therefore suffers from subjective errors. Another such problem is to estimate the input function. It can be measured from arterial blood or it can be searched for a vascular structure on the images which is hard to be done, unreliable, and often impossible. In this study, we focus on blind source separation methods with no needs of manual interaction. Recently, we developed sparse blind source separation and deconvolution (S-BSS-vecDC) method for separation of original sources from dynamic medical data based on probability modeling and Variational Bayes approximation methodology. We apply the methods on dynamic brain PET data and application and comparison of our S-BSS-vecDC algorithm with those of similar assumptions are given. The S-BSS-vecDC algorithm is publicly avai
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-29225S" target="_blank" >GA13-29225S: Slepá dekonvoluce obrazu v limitních podmínkách</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 2014 7th International Conference on BioMedical Engineering and Informatics
ISBN
978-1-4799-5837-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
244-249
Název nakladatele
IEEE
Místo vydání
Beijing
Místo konání akce
Dalian
Datum konání akce
14. 10. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—