A particle system with cooperative branching and coalescence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00442871" target="_blank" >RIV/67985556:_____/15:00442871 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1214/14-AAP1032" target="_blank" >http://dx.doi.org/10.1214/14-AAP1032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/14-AAP1032" target="_blank" >10.1214/14-AAP1032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A particle system with cooperative branching and coalescence
Popis výsledku v původním jazyce
In this paper, we introduce a one-dimensional model of particles performing independent random walks, where only pairs of particles can produce offspring ("cooperative branching") and particles that land on an occupied site merge with the particle present on that site ("coalescence"). We show that the system undergoes a phase transition as the branching rate is increased. For small branching rates the upper invariant law is trivial and the process started with finitely many particles a.s. ends up with asingle particle. Both statements are not true for high branching rates. An interesting feature of the process is that the spectral gap is zero even for low branching rates. Indeed, if the branching rate is small enough, then we show that for the processstarted in the fully occupied state, the particle density decays as one over the square root of time, and the same is true for the decay of the probability that the process still has more than one particle at a later time if it started w
Název v anglickém jazyce
A particle system with cooperative branching and coalescence
Popis výsledku anglicky
In this paper, we introduce a one-dimensional model of particles performing independent random walks, where only pairs of particles can produce offspring ("cooperative branching") and particles that land on an occupied site merge with the particle present on that site ("coalescence"). We show that the system undergoes a phase transition as the branching rate is increased. For small branching rates the upper invariant law is trivial and the process started with finitely many particles a.s. ends up with asingle particle. Both statements are not true for high branching rates. An interesting feature of the process is that the spectral gap is zero even for low branching rates. Indeed, if the branching rate is small enough, then we show that for the processstarted in the fully occupied state, the particle density decays as one over the square root of time, and the same is true for the decay of the probability that the process still has more than one particle at a later time if it started w
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F10%2F0752" target="_blank" >GAP201/10/0752: Stochastické časoprostorové systémy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Applied Probability
ISSN
1050-5164
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
34
Strana od-do
1616-1649
Kód UT WoS článku
000353527000015
EID výsledku v databázi Scopus
2-s2.0-84925451822