Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A New Computational Method for the Sparsest Solutions to Systems of Linear Equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00448595" target="_blank" >RIV/67985556:_____/15:00448595 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1137/140968240" target="_blank" >http://dx.doi.org/10.1137/140968240</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/140968240" target="_blank" >10.1137/140968240</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A New Computational Method for the Sparsest Solutions to Systems of Linear Equations

  • Popis výsledku v původním jazyce

    The connection between the sparsest solution to an underdetermined system of linear equations and the weighted l(1)-minimization problem is established in this paper. We show that seeking the sparsest solution to a linear system can be transformed to searching for the densest slack variable of the dual problem of weighted l(1)-minimization with all possible choices of nonnegative weights. Motivated by this fact, a new reweighted l(1)-algorithm for the sparsest solutions of linear systems, going beyond the framework of existing sparsity-seeking methods, is proposed in this paper. Unlike existing reweighted l(1)-methods that are based on the weights defined directly in terms of iterates, the new algorithm computes a weight in dual space via certain convex optimization and uses such a weight to locate the sparsest solutions. It turns out that the new algorithm converges to the sparsest solutions of linear systems under some mild conditions that do not require the uniqueness of the sparses

  • Název v anglickém jazyce

    A New Computational Method for the Sparsest Solutions to Systems of Linear Equations

  • Popis výsledku anglicky

    The connection between the sparsest solution to an underdetermined system of linear equations and the weighted l(1)-minimization problem is established in this paper. We show that seeking the sparsest solution to a linear system can be transformed to searching for the densest slack variable of the dual problem of weighted l(1)-minimization with all possible choices of nonnegative weights. Motivated by this fact, a new reweighted l(1)-algorithm for the sparsest solutions of linear systems, going beyond the framework of existing sparsity-seeking methods, is proposed in this paper. Unlike existing reweighted l(1)-methods that are based on the weights defined directly in terms of iterates, the new algorithm computes a weight in dual space via certain convex optimization and uses such a weight to locate the sparsest solutions. It turns out that the new algorithm converges to the sparsest solutions of linear systems under some mild conditions that do not require the uniqueness of the sparses

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP201%2F12%2F0671" target="_blank" >GAP201/12/0671: Variační a numerická analýza v nehladké mechanice kontinua</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Optimization

  • ISSN

    1052-6234

  • e-ISSN

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    1110-1134

  • Kód UT WoS článku

    000357406900015

  • EID výsledku v databázi Scopus

    2-s2.0-84940396270