A Predictor-Corrector Path-Following Algorithm for Dual-Degenerate Parametric Optimization Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00316680" target="_blank" >RIV/68407700:21230/17:00316680 - isvavai.cz</a>
Výsledek na webu
<a href="http://epubs.siam.org/doi/pdf/10.1137/16M1068736" target="_blank" >http://epubs.siam.org/doi/pdf/10.1137/16M1068736</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/16M1068736" target="_blank" >10.1137/16M1068736</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Predictor-Corrector Path-Following Algorithm for Dual-Degenerate Parametric Optimization Problems
Popis výsledku v původním jazyce
Most path-following algorithms for tracing a solution path of a parametric nonlinear optimization problem are only certifiably convergent under strong regularity assumptions about the problem functions. In particular, linear independence of the constraint gradients at the solutions is typically assumed, which implies unique multipliers. In this paper we propose a procedure designed to solve problems satisfying a weaker set of conditions, allowing for nonunique (but bounded) multipliers. Each iteration along the path consists of three parts: (1) a Newton corrector step for the primal and dual variables, which is obtained by solving a linear system of equations, (2) a predictor step for the primal and dual variables, which is found as the solution of a quadratic programming problem, and (3) a jump step for the dual variables, which is found as the solution of a linear programming problem. We present a convergence proof and demonstrate the successful solution tracking of the algorithm numerically on a couple of illustrative examples.
Název v anglickém jazyce
A Predictor-Corrector Path-Following Algorithm for Dual-Degenerate Parametric Optimization Problems
Popis výsledku anglicky
Most path-following algorithms for tracing a solution path of a parametric nonlinear optimization problem are only certifiably convergent under strong regularity assumptions about the problem functions. In particular, linear independence of the constraint gradients at the solutions is typically assumed, which implies unique multipliers. In this paper we propose a procedure designed to solve problems satisfying a weaker set of conditions, allowing for nonunique (but bounded) multipliers. Each iteration along the path consists of three parts: (1) a Newton corrector step for the primal and dual variables, which is obtained by solving a linear system of equations, (2) a predictor step for the primal and dual variables, which is found as the solution of a quadratic programming problem, and (3) a jump step for the dual variables, which is found as the solution of a linear programming problem. We present a convergence proof and demonstrate the successful solution tracking of the algorithm numerically on a couple of illustrative examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON OPTIMIZATION
ISSN
1052-6234
e-ISSN
1095-7189
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
538-564
Kód UT WoS článku
000404178500023
EID výsledku v databázi Scopus
2-s2.0-85021144866