Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F22%3A00556736" target="_blank" >RIV/68145535:_____/22:00556736 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/22:10249788 RIV/61989100:27240/22:10249788

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/10.1007/s11075-022-01281-3.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11075-022-01281-3.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-022-01281-3" target="_blank" >10.1007/s11075-022-01281-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities

  • Popis výsledku v původním jazyce

    The unpreconditioned hybrid domain decomposition method was recently shown to be a competitive solver for linear elliptic PDE problems discretized by structured grids. Here, we plug H-TFETI-DP (hybrid total finite element tearing and interconnecting dual primal) method into the solution of huge boundary elliptic variational inequalities. We decompose the domain into subdomains that are discretized and then interconnected partly by Lagrange multipliers and partly by edge averages. After eliminating the primal variables, we get a quadratic programming problem with a well-conditioned Hessian and bound and equality constraints that is effectively solvable by specialized algorithms. We prove that the procedure enjoys optimal, i.e., asymptotically linear complexity. The analysis uses recently established bounds on the spectrum of the Schur complements of the clusters interconnected by edge/face averages. The results extend the scope of scalability of massively parallel algorithms for the solution of variational inequalities and show the outstanding efficiency of the H-TFETI-DP coarse grid split between the primal and dual variables.

  • Název v anglickém jazyce

    Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities

  • Popis výsledku anglicky

    The unpreconditioned hybrid domain decomposition method was recently shown to be a competitive solver for linear elliptic PDE problems discretized by structured grids. Here, we plug H-TFETI-DP (hybrid total finite element tearing and interconnecting dual primal) method into the solution of huge boundary elliptic variational inequalities. We decompose the domain into subdomains that are discretized and then interconnected partly by Lagrange multipliers and partly by edge averages. After eliminating the primal variables, we get a quadratic programming problem with a well-conditioned Hessian and bound and equality constraints that is effectively solvable by specialized algorithms. We prove that the procedure enjoys optimal, i.e., asymptotically linear complexity. The analysis uses recently established bounds on the spectrum of the Schur complements of the clusters interconnected by edge/face averages. The results extend the scope of scalability of massively parallel algorithms for the solution of variational inequalities and show the outstanding efficiency of the H-TFETI-DP coarse grid split between the primal and dual variables.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

    1572-9265

  • Svazek periodika

    91

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    29

  • Strana od-do

    773-801

  • Kód UT WoS článku

    000784390700002

  • EID výsledku v databázi Scopus

    2-s2.0-85128280893