Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F22%3A00556736" target="_blank" >RIV/68145535:_____/22:00556736 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/22:10249788 RIV/61989100:27240/22:10249788
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s11075-022-01281-3.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11075-022-01281-3.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-022-01281-3" target="_blank" >10.1007/s11075-022-01281-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities
Popis výsledku v původním jazyce
The unpreconditioned hybrid domain decomposition method was recently shown to be a competitive solver for linear elliptic PDE problems discretized by structured grids. Here, we plug H-TFETI-DP (hybrid total finite element tearing and interconnecting dual primal) method into the solution of huge boundary elliptic variational inequalities. We decompose the domain into subdomains that are discretized and then interconnected partly by Lagrange multipliers and partly by edge averages. After eliminating the primal variables, we get a quadratic programming problem with a well-conditioned Hessian and bound and equality constraints that is effectively solvable by specialized algorithms. We prove that the procedure enjoys optimal, i.e., asymptotically linear complexity. The analysis uses recently established bounds on the spectrum of the Schur complements of the clusters interconnected by edge/face averages. The results extend the scope of scalability of massively parallel algorithms for the solution of variational inequalities and show the outstanding efficiency of the H-TFETI-DP coarse grid split between the primal and dual variables.
Název v anglickém jazyce
Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities
Popis výsledku anglicky
The unpreconditioned hybrid domain decomposition method was recently shown to be a competitive solver for linear elliptic PDE problems discretized by structured grids. Here, we plug H-TFETI-DP (hybrid total finite element tearing and interconnecting dual primal) method into the solution of huge boundary elliptic variational inequalities. We decompose the domain into subdomains that are discretized and then interconnected partly by Lagrange multipliers and partly by edge averages. After eliminating the primal variables, we get a quadratic programming problem with a well-conditioned Hessian and bound and equality constraints that is effectively solvable by specialized algorithms. We prove that the procedure enjoys optimal, i.e., asymptotically linear complexity. The analysis uses recently established bounds on the spectrum of the Schur complements of the clusters interconnected by edge/face averages. The results extend the scope of scalability of massively parallel algorithms for the solution of variational inequalities and show the outstanding efficiency of the H-TFETI-DP coarse grid split between the primal and dual variables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Svazek periodika
91
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
29
Strana od-do
773-801
Kód UT WoS článku
000784390700002
EID výsledku v databázi Scopus
2-s2.0-85128280893