EMPIRICAL ESTIMATES IN STOCHASTIC PROGRAMS WITH PROBABILITY AND SECOND ORDER STOCHASTIC DOMINANCE CONSTRAINTS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00454495" target="_blank" >RIV/67985556:_____/15:00454495 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EMPIRICAL ESTIMATES IN STOCHASTIC PROGRAMS WITH PROBABILITY AND SECOND ORDER STOCHASTIC DOMINANCE CONSTRAINTS
Popis výsledku v původním jazyce
Stochastic optimization problems with an operator of the mathematical expectation in the objective function, probability and stochastic dominance constraints belong to ?deterministic problems depending on a probability measure. Complete knowledge of theprobability measure is a necessary condition for solving these problems. However, since this assumption is very rarely fulfilled (in applications), problems are mostly solved on the basis of data. Mathematically it means that the ?underlying probabilitymeasure is replaced by an empirical one (determined by the corresponding data). Stochastic estimates of an optimal value and an optimal solution can only then be obtained. Properties of these estimates have been investigated many times, mostly in the case of constraint sets not depending on the probability measure. Our results generalize such estimates to two separate cases (already mentioned above) when the constraint sets do depend on the probability measure.
Název v anglickém jazyce
EMPIRICAL ESTIMATES IN STOCHASTIC PROGRAMS WITH PROBABILITY AND SECOND ORDER STOCHASTIC DOMINANCE CONSTRAINTS
Popis výsledku anglicky
Stochastic optimization problems with an operator of the mathematical expectation in the objective function, probability and stochastic dominance constraints belong to ?deterministic problems depending on a probability measure. Complete knowledge of theprobability measure is a necessary condition for solving these problems. However, since this assumption is very rarely fulfilled (in applications), problems are mostly solved on the basis of data. Mathematically it means that the ?underlying probabilitymeasure is replaced by an empirical one (determined by the corresponding data). Stochastic estimates of an optimal value and an optimal solution can only then be obtained. Properties of these estimates have been investigated many times, mostly in the case of constraint sets not depending on the probability measure. Our results generalize such estimates to two separate cases (already mentioned above) when the constraint sets do depend on the probability measure.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-14445S" target="_blank" >GA13-14445S: Nové trendy ve stochastických ekonomických modelech za neurčitosti</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Mathematica Universitas Comenianae
ISSN
0862-9544
e-ISSN
—
Svazek periodika
84
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
15
Strana od-do
267-281
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—