A remark on multiobjective stochastic optimization via strongly convex functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00450553" target="_blank" >RIV/67985556:_____/16:00450553 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10100-015-0414-7" target="_blank" >http://dx.doi.org/10.1007/s10100-015-0414-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10100-015-0414-7" target="_blank" >10.1007/s10100-015-0414-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A remark on multiobjective stochastic optimization via strongly convex functions
Popis výsledku v původním jazyce
Many economic and financial applications lead (from the mathematical point of view) to deterministic optimization problems depending on a probability measure. These problems can be static (one stage), dynamic with finite (multistage) or infinite horizon, single objective or multiobjective. We focus on one-stage case in multiobjective setting. Evidently, well known results from the deterministic optimization theory can be employed in the case when the "underlying" probability measure is completely known. The assumption of a complete knowledge of the probability measure is fulfilled very seldom. Consequently, we have mostly to analyze the mathematical models on the data base to obtain a stochastic estimate of the corresponding "theoretical" characteristics. However, the investigation of these estimates has been done mostly in one-objective case. In this paper we focus on the investigation of the relationship between "characteristics" obtained on the base of complete knowledge of the probability measure and estimates obtained on the (above mentioned) data base, mostly in the multiobjective case.
Název v anglickém jazyce
A remark on multiobjective stochastic optimization via strongly convex functions
Popis výsledku anglicky
Many economic and financial applications lead (from the mathematical point of view) to deterministic optimization problems depending on a probability measure. These problems can be static (one stage), dynamic with finite (multistage) or infinite horizon, single objective or multiobjective. We focus on one-stage case in multiobjective setting. Evidently, well known results from the deterministic optimization theory can be employed in the case when the "underlying" probability measure is completely known. The assumption of a complete knowledge of the probability measure is fulfilled very seldom. Consequently, we have mostly to analyze the mathematical models on the data base to obtain a stochastic estimate of the corresponding "theoretical" characteristics. However, the investigation of these estimates has been done mostly in one-objective case. In this paper we focus on the investigation of the relationship between "characteristics" obtained on the base of complete knowledge of the probability measure and estimates obtained on the (above mentioned) data base, mostly in the multiobjective case.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-14445S" target="_blank" >GA13-14445S: Nové trendy ve stochastických ekonomických modelech za neurčitosti</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central European Journal of Operations Research
ISSN
1435-246X
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
25
Strana od-do
309-333
Kód UT WoS článku
000374450100005
EID výsledku v databázi Scopus
2-s2.0-84941338155