Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recursive estimation of high-order Markov chains: Approximation by finite mixtures

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recursive estimation of high-order Markov chains: Approximation by finite mixtures

  • Popis výsledku v původním jazyce

    A high-order Markov chain is a universal model of stochastic relations between discrete-valued variables. The exact estimation of its transition probabilities suffers from the curse of dimensionality. It requires an excessive amount of informative observations as well as an extreme memory for storing the corresponding sufficient statistic. The paper bypasses this problem by considering a rich subset of Markov-chain models, namely, mixtures of low dimensional Markov chains, possibly with external variables. It uses Bayesian approximate estimation suitable for a subsequent decision making under uncertainty. The proposed recursive (sequential, one-pass) estimator updates a product of Dirichlet probability densities (pds) used as an approximate posterior pd, projects the result back to this class of pds and applies an improved data-dependent stabilised forgetting, which counteracts the dangerous accumulation of approximation errors.

  • Název v anglickém jazyce

    Recursive estimation of high-order Markov chains: Approximation by finite mixtures

  • Popis výsledku anglicky

    A high-order Markov chain is a universal model of stochastic relations between discrete-valued variables. The exact estimation of its transition probabilities suffers from the curse of dimensionality. It requires an excessive amount of informative observations as well as an extreme memory for storing the corresponding sufficient statistic. The paper bypasses this problem by considering a rich subset of Markov-chain models, namely, mixtures of low dimensional Markov chains, possibly with external variables. It uses Bayesian approximate estimation suitable for a subsequent decision making under uncertainty. The proposed recursive (sequential, one-pass) estimator updates a product of Dirichlet probability densities (pds) used as an approximate posterior pd, projects the result back to this class of pds and applies an improved data-dependent stabilised forgetting, which counteracts the dangerous accumulation of approximation errors.

Klasifikace

  • Druh

    Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Svazek periodika

    326

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    188-201

  • Kód UT WoS článku

    000363348400013

  • EID výsledku v databázi Scopus

    2-s2.0-84943770986

Základní informace

Druh výsledku

Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

Jx

CEP

BC - Teorie a systémy řízení

Rok uplatnění

2016