Non-parametric Bayesian models of response function in dynamic image sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00456983" target="_blank" >RIV/67985556:_____/16:00456983 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cviu.2015.11.010" target="_blank" >http://dx.doi.org/10.1016/j.cviu.2015.11.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cviu.2015.11.010" target="_blank" >10.1016/j.cviu.2015.11.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-parametric Bayesian models of response function in dynamic image sequences
Popis výsledku v původním jazyce
Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness.
Název v anglickém jazyce
Non-parametric Bayesian models of response function in dynamic image sequences
Popis výsledku anglicky
Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-29225S" target="_blank" >GA13-29225S: Slepá dekonvoluce obrazu v limitních podmínkách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Vision and Image Understanding
ISSN
1077-3142
e-ISSN
—
Svazek periodika
151
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
90-100
Kód UT WoS článku
000385338900009
EID výsledku v databázi Scopus
2-s2.0-84990911120