Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00460642" target="_blank" >RIV/67985556:_____/16:00460642 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12520/16:43890555 RIV/00216208:11320/16:10324380
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S143192761600074X" target="_blank" >http://dx.doi.org/10.1017/S143192761600074X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S143192761600074X" target="_blank" >10.1017/S143192761600074X</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment
Popis výsledku v původním jazyce
Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator and finally provided comparison with other freely available methods.
Název v anglickém jazyce
Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment
Popis výsledku anglicky
Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator and finally provided comparison with other freely available methods.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Microscopy and Microanalysis
ISSN
1431-9276
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
497-506
Kód UT WoS článku
000384332600003
EID výsledku v databázi Scopus
2-s2.0-84964751084