Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fully probabilistic design of hierarchical Bayesian models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00463052" target="_blank" >RIV/67985556:_____/16:00463052 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.ins.2016.07.035" target="_blank" >http://dx.doi.org/10.1016/j.ins.2016.07.035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2016.07.035" target="_blank" >10.1016/j.ins.2016.07.035</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fully probabilistic design of hierarchical Bayesian models

  • Popis výsledku v původním jazyce

    The minimum cross-entropy principle is an established technique for design of an un- known distribution, processing linear functional constraints on the distribution. More generally, fully probabilistic design (FPD) chooses the distribution-within the knowledge-constrained set of possible distributions-for which the Kullback-Leibler divergence to the designer’s ideal distribution is minimized. These principles treat the unknown distribution deterministically. In this paper, fully probabilistic design is applied to hierarchical Bayesian models for the first time, yielding optimal design of a (possibly nonparametric) stochastic model for the unknown distribution. This equips minimum cross-entropy and FPD distributional estimates with measures of uncertainty. It enables robust choice of the optimal model, as well as randomization of this choice. The ability to process non-linear functional constraints in the constructed distribution significantly extends the applicability of these principles.

  • Název v anglickém jazyce

    Fully probabilistic design of hierarchical Bayesian models

  • Popis výsledku anglicky

    The minimum cross-entropy principle is an established technique for design of an un- known distribution, processing linear functional constraints on the distribution. More generally, fully probabilistic design (FPD) chooses the distribution-within the knowledge-constrained set of possible distributions-for which the Kullback-Leibler divergence to the designer’s ideal distribution is minimized. These principles treat the unknown distribution deterministically. In this paper, fully probabilistic design is applied to hierarchical Bayesian models for the first time, yielding optimal design of a (possibly nonparametric) stochastic model for the unknown distribution. This equips minimum cross-entropy and FPD distributional estimates with measures of uncertainty. It enables robust choice of the optimal model, as well as randomization of this choice. The ability to process non-linear functional constraints in the constructed distribution significantly extends the applicability of these principles.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-13502S" target="_blank" >GA13-13502S: Plně pravděpodobností návrh dynamických rozhodovacích strategií s nedokonalými účastníky v tržních scénářích</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Svazek periodika

    369

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    532-547

  • Kód UT WoS článku

    000383292500035

  • EID výsledku v databázi Scopus

    2-s2.0-84978967308