Model-based preference quantification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00573588" target="_blank" >RIV/67985556:_____/23:00573588 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0005109823003461?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0005109823003461?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2023.111185" target="_blank" >10.1016/j.automatica.2023.111185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model-based preference quantification
Popis výsledku v původním jazyce
Any prescriptive theory of decision-making (DM) has to cope with the common DM agents’ inability to fully specify their preferences dependent on several attributes. The paper provides the needed preference completion and quantification for fully probabilistic design (FPD) of DM strategies. FPD (covering the usual Bayesian DM) probabilistically models the agent’s environment and quantifies its preferences via an ideal probabilistic model of the closed DM loop. The probability density (pd) models (closed-loop) behaviour, a collection of involved random variables. Its ideal twin is high on desired behaviours, small on undesired and zero on forbidden ones. The FPD-optimal strategy minimises the Kullback-Leibler divergence (KLD) of the closed-loop modelling pd to the ideal twin. The exposed preference quantification chooses the optimal ideal pd from the set of pds compatible with partially-specified agent’s preferences. The optimal ideal pd minimises the KLD minima reached by the optimal strategies for respective imminent ideal pds. This preference-focused twin of the minimum KLD principle was applied to special sets of ideal pds. The paper extends them towards exploration and balancing contradictory wishes on states and actions.
Název v anglickém jazyce
Model-based preference quantification
Popis výsledku anglicky
Any prescriptive theory of decision-making (DM) has to cope with the common DM agents’ inability to fully specify their preferences dependent on several attributes. The paper provides the needed preference completion and quantification for fully probabilistic design (FPD) of DM strategies. FPD (covering the usual Bayesian DM) probabilistically models the agent’s environment and quantifies its preferences via an ideal probabilistic model of the closed DM loop. The probability density (pd) models (closed-loop) behaviour, a collection of involved random variables. Its ideal twin is high on desired behaviours, small on undesired and zero on forbidden ones. The FPD-optimal strategy minimises the Kullback-Leibler divergence (KLD) of the closed-loop modelling pd to the ideal twin. The exposed preference quantification chooses the optimal ideal pd from the set of pds compatible with partially-specified agent’s preferences. The optimal ideal pd minimises the KLD minima reached by the optimal strategies for respective imminent ideal pds. This preference-focused twin of the minimum KLD principle was applied to special sets of ideal pds. The paper extends them towards exploration and balancing contradictory wishes on states and actions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Automatica
ISSN
0005-1098
e-ISSN
1873-2836
Svazek periodika
156
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
111185
Kód UT WoS článku
001039370200001
EID výsledku v databázi Scopus
2-s2.0-85166665633