Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Model-based preference quantification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00573588" target="_blank" >RIV/67985556:_____/23:00573588 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0005109823003461?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0005109823003461?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.automatica.2023.111185" target="_blank" >10.1016/j.automatica.2023.111185</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Model-based preference quantification

  • Popis výsledku v původním jazyce

    Any prescriptive theory of decision-making (DM) has to cope with the common DM agents’ inability to fully specify their preferences dependent on several attributes. The paper provides the needed preference completion and quantification for fully probabilistic design (FPD) of DM strategies. FPD (covering the usual Bayesian DM) probabilistically models the agent’s environment and quantifies its preferences via an ideal probabilistic model of the closed DM loop. The probability density (pd) models (closed-loop) behaviour, a collection of involved random variables. Its ideal twin is high on desired behaviours, small on undesired and zero on forbidden ones. The FPD-optimal strategy minimises the Kullback-Leibler divergence (KLD) of the closed-loop modelling pd to the ideal twin. The exposed preference quantification chooses the optimal ideal pd from the set of pds compatible with partially-specified agent’s preferences. The optimal ideal pd minimises the KLD minima reached by the optimal strategies for respective imminent ideal pds. This preference-focused twin of the minimum KLD principle was applied to special sets of ideal pds. The paper extends them towards exploration and balancing contradictory wishes on states and actions.

  • Název v anglickém jazyce

    Model-based preference quantification

  • Popis výsledku anglicky

    Any prescriptive theory of decision-making (DM) has to cope with the common DM agents’ inability to fully specify their preferences dependent on several attributes. The paper provides the needed preference completion and quantification for fully probabilistic design (FPD) of DM strategies. FPD (covering the usual Bayesian DM) probabilistically models the agent’s environment and quantifies its preferences via an ideal probabilistic model of the closed DM loop. The probability density (pd) models (closed-loop) behaviour, a collection of involved random variables. Its ideal twin is high on desired behaviours, small on undesired and zero on forbidden ones. The FPD-optimal strategy minimises the Kullback-Leibler divergence (KLD) of the closed-loop modelling pd to the ideal twin. The exposed preference quantification chooses the optimal ideal pd from the set of pds compatible with partially-specified agent’s preferences. The optimal ideal pd minimises the KLD minima reached by the optimal strategies for respective imminent ideal pds. This preference-focused twin of the minimum KLD principle was applied to special sets of ideal pds. The paper extends them towards exploration and balancing contradictory wishes on states and actions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Automatica

  • ISSN

    0005-1098

  • e-ISSN

    1873-2836

  • Svazek periodika

    156

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    111185

  • Kód UT WoS článku

    001039370200001

  • EID výsledku v databázi Scopus

    2-s2.0-85166665633