Experiments with the User’s Feedback in Preference Elicitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575198" target="_blank" >RIV/67985556:_____/23:00575198 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experiments with the User’s Feedback in Preference Elicitation
Popis výsledku v původním jazyce
This paper deals with user’s preferences (wishes). Common users are uneducated in the decision-making (DM) theory and present their preferences incompletely. That is why we elicit them from such a user during the DM. The paper works with the DM theory called fully probabilistic design (FPD). FPD models closed DM loop, made by the user and the system, by the joint probability density (pd, real pd). A joint ideal pd quantifies the user’s preferences. It assigns high probability values to preferred closed-loop behaviors and low values to undesired behaviors. The real pd should be kept near the ideal pd. By minimizing the Kullback-Leibler divergence of the real and ideal pds, the optimal decision policy is found. The presented algorithmic quantification of preferences provides ambitious but potentially reachable DM aims. It suppresses demands on tuning preference-expressing parameters. The considered ideal pd assigns high probabilities to desired (ideal) sets of states and actions. The parameters of the ideal pd (tuned during the DM via the user’s feedback) are: ▶ relative significance of respective probabilities. ▶ a parameter balancing exploration with exploitation. Their systematic tuning solves meta-DM level task, which observes the agent’s satisfaction expressed humanly by “school-marks”. It opts free parameters to reach the best marks. A formalization and solution of this meta-task were recently done, but experience with it is limited. This paper recalls the theory and provides representative samples of extensive up to now missing simulations.n
Název v anglickém jazyce
Experiments with the User’s Feedback in Preference Elicitation
Popis výsledku anglicky
This paper deals with user’s preferences (wishes). Common users are uneducated in the decision-making (DM) theory and present their preferences incompletely. That is why we elicit them from such a user during the DM. The paper works with the DM theory called fully probabilistic design (FPD). FPD models closed DM loop, made by the user and the system, by the joint probability density (pd, real pd). A joint ideal pd quantifies the user’s preferences. It assigns high probability values to preferred closed-loop behaviors and low values to undesired behaviors. The real pd should be kept near the ideal pd. By minimizing the Kullback-Leibler divergence of the real and ideal pds, the optimal decision policy is found. The presented algorithmic quantification of preferences provides ambitious but potentially reachable DM aims. It suppresses demands on tuning preference-expressing parameters. The considered ideal pd assigns high probabilities to desired (ideal) sets of states and actions. The parameters of the ideal pd (tuned during the DM via the user’s feedback) are: ▶ relative significance of respective probabilities. ▶ a parameter balancing exploration with exploitation. Their systematic tuning solves meta-DM level task, which observes the agent’s satisfaction expressed humanly by “school-marks”. It opts free parameters to reach the best marks. A formalization and solution of this meta-task were recently done, but experience with it is limited. This paper recalls the theory and provides representative samples of extensive up to now missing simulations.n
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIABI-2022 : Artificial Intelligence and Applications for Business and Industries 2022
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
13
Strana od-do
—
Název nakladatele
CEUR-WS
Místo vydání
Achen
Místo konání akce
Udine
Datum konání akce
27. 11. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—