Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Experiments with the User’s Feedback in Preference Elicitation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575198" target="_blank" >RIV/67985556:_____/23:00575198 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Experiments with the User’s Feedback in Preference Elicitation

  • Popis výsledku v původním jazyce

    This paper deals with user’s preferences (wishes). Common users are uneducated in the decision-making (DM) theory and present their preferences incompletely. That is why we elicit them from such a user during the DM. The paper works with the DM theory called fully probabilistic design (FPD). FPD models closed DM loop, made by the user and the system, by the joint probability density (pd, real pd). A joint ideal pd quantifies the user’s preferences. It assigns high probability values to preferred closed-loop behaviors and low values to undesired behaviors. The real pd should be kept near the ideal pd. By minimizing the Kullback-Leibler divergence of the real and ideal pds, the optimal decision policy is found. The presented algorithmic quantification of preferences provides ambitious but potentially reachable DM aims. It suppresses demands on tuning preference-expressing parameters. The considered ideal pd assigns high probabilities to desired (ideal) sets of states and actions. The parameters of the ideal pd (tuned during the DM via the user’s feedback) are: ▶ relative significance of respective probabilities. ▶ a parameter balancing exploration with exploitation. Their systematic tuning solves meta-DM level task, which observes the agent’s satisfaction expressed humanly by “school-marks”. It opts free parameters to reach the best marks. A formalization and solution of this meta-task were recently done, but experience with it is limited. This paper recalls the theory and provides representative samples of extensive up to now missing simulations.n

  • Název v anglickém jazyce

    Experiments with the User’s Feedback in Preference Elicitation

  • Popis výsledku anglicky

    This paper deals with user’s preferences (wishes). Common users are uneducated in the decision-making (DM) theory and present their preferences incompletely. That is why we elicit them from such a user during the DM. The paper works with the DM theory called fully probabilistic design (FPD). FPD models closed DM loop, made by the user and the system, by the joint probability density (pd, real pd). A joint ideal pd quantifies the user’s preferences. It assigns high probability values to preferred closed-loop behaviors and low values to undesired behaviors. The real pd should be kept near the ideal pd. By minimizing the Kullback-Leibler divergence of the real and ideal pds, the optimal decision policy is found. The presented algorithmic quantification of preferences provides ambitious but potentially reachable DM aims. It suppresses demands on tuning preference-expressing parameters. The considered ideal pd assigns high probabilities to desired (ideal) sets of states and actions. The parameters of the ideal pd (tuned during the DM via the user’s feedback) are: ▶ relative significance of respective probabilities. ▶ a parameter balancing exploration with exploitation. Their systematic tuning solves meta-DM level task, which observes the agent’s satisfaction expressed humanly by “school-marks”. It opts free parameters to reach the best marks. A formalization and solution of this meta-task were recently done, but experience with it is limited. This paper recalls the theory and provides representative samples of extensive up to now missing simulations.n

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    AIABI-2022 : Artificial Intelligence and Applications for Business and Industries 2022

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Počet stran výsledku

    13

  • Strana od-do

  • Název nakladatele

    CEUR-WS

  • Místo vydání

    Achen

  • Místo konání akce

    Udine

  • Datum konání akce

    27. 11. 2022

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku