Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Subgradient Method for Free Material Design

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00507124" target="_blank" >RIV/67985556:_____/16:00507124 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://epubs.siam.org/doi/10.1137/15M1019660" target="_blank" >https://epubs.siam.org/doi/10.1137/15M1019660</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/15M1019660" target="_blank" >10.1137/15M1019660</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Subgradient Method for Free Material Design

  • Popis výsledku v původním jazyce

    A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into a saddle-point form in which the inverse of the stiffness matrix A(E) in the constraint is eliminated. The size of A(E) is generally large, denoted as N × N. We apply the primal-dual subgradient method to solve the restricted saddle-point formula. This is the first gradient-type method for FMO. Each iteration of our algorithm takes a total of O(N^2) floating-point operations and an auxiliary vector storage of size O(N), compared with formulations having the inverse of A(E) which requires O(N^3) arithmetic operations and an auxiliary vector storage of size O(N^2). To solve the problem, we developed a closed-form solution to a semidefinite least squares problem and an efficient parameter update scheme for the gradient method, which are included in the appendix. We also approximate a solution to the bounded Lagrangian dual problem. The problem is decomposed into small problems each only having an unknown of k × k (k = 3 or 6) matrix, and can be solved in parallel. The iteration bound of our algorithm is optimal for general subgradient scheme. Finally we present promising numerical results.n

  • Název v anglickém jazyce

    A Subgradient Method for Free Material Design

  • Popis výsledku anglicky

    A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into a saddle-point form in which the inverse of the stiffness matrix A(E) in the constraint is eliminated. The size of A(E) is generally large, denoted as N × N. We apply the primal-dual subgradient method to solve the restricted saddle-point formula. This is the first gradient-type method for FMO. Each iteration of our algorithm takes a total of O(N^2) floating-point operations and an auxiliary vector storage of size O(N), compared with formulations having the inverse of A(E) which requires O(N^3) arithmetic operations and an auxiliary vector storage of size O(N^2). To solve the problem, we developed a closed-form solution to a semidefinite least squares problem and an efficient parameter update scheme for the gradient method, which are included in the appendix. We also approximate a solution to the bounded Lagrangian dual problem. The problem is decomposed into small problems each only having an unknown of k × k (k = 3 or 6) matrix, and can be solved in parallel. The iteration bound of our algorithm is optimal for general subgradient scheme. Finally we present promising numerical results.n

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Optimization

  • ISSN

    1052-6234

  • e-ISSN

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    41

  • Strana od-do

    2314-2354

  • Kód UT WoS článku

    000391853600014

  • EID výsledku v databázi Scopus

    2-s2.0-85007240765