Sequential estimation and diffusion of information over networks: A Bayesian approach with exponential family of distributions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00467560" target="_blank" >RIV/67985556:_____/17:00467560 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TSP.2016.2641380" target="_blank" >http://dx.doi.org/10.1109/TSP.2016.2641380</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2016.2641380" target="_blank" >10.1109/TSP.2016.2641380</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sequential estimation and diffusion of information over networks: A Bayesian approach with exponential family of distributions
Popis výsledku v původním jazyce
Diffusion networks where nodes collaboratively estimate the parameters of stochastic models from shared observations and other estimates have become an established research topic. In this paper the problem of sequential estimation where information in the network diffuses with time is formulated abstractly and independently from any particular model. The objective is to reach a generic solution that is applicable to a wide class of popular models and based on the exponential family of distributions. The adopted Bayesian and information-theoretic paradigms provide probabilistically consistent means for incorporation of shared observations in the implemented estimation of the unknowns by the nodes as well as for effective combination of the „knowledge“ of the nodes over the network. It is shown and illustrated on four examples that under certain conditions, the resulting algorithms are analytically tractable, either directly or after simple approximations. The examples include the linear regression, Kalman filtering, logistic regression, and the inference of an inhomogeneous Poisson process. The first two examples have their more or less direct counterparts in the state-of-the-art diffusion literature whereas the latter two are new.
Název v anglickém jazyce
Sequential estimation and diffusion of information over networks: A Bayesian approach with exponential family of distributions
Popis výsledku anglicky
Diffusion networks where nodes collaboratively estimate the parameters of stochastic models from shared observations and other estimates have become an established research topic. In this paper the problem of sequential estimation where information in the network diffuses with time is formulated abstractly and independently from any particular model. The objective is to reach a generic solution that is applicable to a wide class of popular models and based on the exponential family of distributions. The adopted Bayesian and information-theoretic paradigms provide probabilistically consistent means for incorporation of shared observations in the implemented estimation of the unknowns by the nodes as well as for effective combination of the „knowledge“ of the nodes over the network. It is shown and illustrated on four examples that under certain conditions, the resulting algorithms are analytically tractable, either directly or after simple approximations. The examples include the linear regression, Kalman filtering, logistic regression, and the inference of an inhomogeneous Poisson process. The first two examples have their more or less direct counterparts in the state-of-the-art diffusion literature whereas the latter two are new.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GP14-06678P" target="_blank" >GP14-06678P: Distribuované dynamické odhadování v difuzních sítích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1795-1809
Kód UT WoS článku
000395484200012
EID výsledku v databázi Scopus
2-s2.0-85014905526