Adaptive multiple importance sampling for Gaussian processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00469804" target="_blank" >RIV/67985556:_____/17:00469804 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/00949655.2017.1280037" target="_blank" >http://dx.doi.org/10.1080/00949655.2017.1280037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00949655.2017.1280037" target="_blank" >10.1080/00949655.2017.1280037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive multiple importance sampling for Gaussian processes
Popis výsledku v původním jazyce
In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.
Název v anglickém jazyce
Adaptive multiple importance sampling for Gaussian processes
Popis výsledku anglicky
In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/7F14287" target="_blank" >7F14287: Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Statistical Computation and Simulation
ISSN
0094-9655
e-ISSN
—
Svazek periodika
87
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
1644-1665
Kód UT WoS článku
000399503500009
EID výsledku v databázi Scopus
2-s2.0-85010689209