Fast Bayesian JPEG Decompression and Denoising With Tight Frame Priors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00471741" target="_blank" >RIV/67985556:_____/17:00471741 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TIP.2016.2627802" target="_blank" >http://dx.doi.org/10.1109/TIP.2016.2627802</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIP.2016.2627802" target="_blank" >10.1109/TIP.2016.2627802</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast Bayesian JPEG Decompression and Denoising With Tight Frame Priors
Popis výsledku v původním jazyce
JPEG decompression can be understood as an image reconstruction problem similar to denoising or deconvolution. Such problems can be solved within the Bayesian maximum a posteriori probability framework by iterative optimization algorithms. Prior knowledge about an image is usually describednby the l1 norm of its sparse domain representation. For many problems, if the sparse domain forms a tight frame, optimization by the alternating direction method of multipliers can be verynefficient. However, for JPEG, such solution is not straightforward, e.g., due to quantization and subsampling of chrominance channels. Derivation of such solution is the main contribution of this paper. In addition, we show that a minor modification of the proposed algorithm solves simultaneously the problem of image denoising. In the experimental section, we analyze the behavior of the proposed decompression algorithm in a small number of iterations with an interesting conclusion that this mode outperforms full convergence. Example images demonstratenthe visual quality of decompression and quantitative experiments compare the algorithm with other state-of-the-art methods.
Název v anglickém jazyce
Fast Bayesian JPEG Decompression and Denoising With Tight Frame Priors
Popis výsledku anglicky
JPEG decompression can be understood as an image reconstruction problem similar to denoising or deconvolution. Such problems can be solved within the Bayesian maximum a posteriori probability framework by iterative optimization algorithms. Prior knowledge about an image is usually describednby the l1 norm of its sparse domain representation. For many problems, if the sparse domain forms a tight frame, optimization by the alternating direction method of multipliers can be verynefficient. However, for JPEG, such solution is not straightforward, e.g., due to quantization and subsampling of chrominance channels. Derivation of such solution is the main contribution of this paper. In addition, we show that a minor modification of the proposed algorithm solves simultaneously the problem of image denoising. In the experimental section, we analyze the behavior of the proposed decompression algorithm in a small number of iterations with an interesting conclusion that this mode outperforms full convergence. Example images demonstratenthe visual quality of decompression and quantitative experiments compare the algorithm with other state-of-the-art methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-13830S" target="_blank" >GA16-13830S: Perfuzní zobrazování v magnetické rezonanci pomocí komprimovaného snímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Image Processing
ISSN
1057-7149
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
490-501
Kód UT WoS článku
000397221700012
EID výsledku v databázi Scopus
2-s2.0-85015224484