Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

High-dimensional data in economics and their (robust) analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00474076" target="_blank" >RIV/67985556:_____/17:00474076 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/17:00473577

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5937/sjm12-10778" target="_blank" >http://dx.doi.org/10.5937/sjm12-10778</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5937/sjm12-10778" target="_blank" >10.5937/sjm12-10778</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    High-dimensional data in economics and their (robust) analysis

  • Popis výsledku v původním jazyce

    This work is devoted to statistical methods for the analysis of economic data with a large number of variables. The authors present a review of references documenting that such data are more and more commonly available in various theoretical and applied economic problems and their analysis can be hardly performed with standard econometric methods. The paper is focused on highdimensional data, which have a small number of observations, and gives an overview of recently proposed methods for their analysis in the context of econometrics, particularly in the areas of dimensionality reduction, linear regression and classification analysis. Further, the performance of various methods is illustrated on a publicly available benchmark data set on credit scoring. In comparison with other authors, robust methods designed to be insensitive to the presence of outlying measurements are also used. Their strength is revealed after adding an artificial contamination by noise to the original data. In addition, the performance of various methods for a prior dimensionality reduction of the data is compared.

  • Název v anglickém jazyce

    High-dimensional data in economics and their (robust) analysis

  • Popis výsledku anglicky

    This work is devoted to statistical methods for the analysis of economic data with a large number of variables. The authors present a review of references documenting that such data are more and more commonly available in various theoretical and applied economic problems and their analysis can be hardly performed with standard econometric methods. The paper is focused on highdimensional data, which have a small number of observations, and gives an overview of recently proposed methods for their analysis in the context of econometrics, particularly in the areas of dimensionality reduction, linear regression and classification analysis. Further, the performance of various methods is illustrated on a publicly available benchmark data set on credit scoring. In comparison with other authors, robust methods designed to be insensitive to the presence of outlying measurements are also used. Their strength is revealed after adding an artificial contamination by noise to the original data. In addition, the performance of various methods for a prior dimensionality reduction of the data is compared.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-07384S" target="_blank" >GA17-07384S: Neparametrické (statistické) metody v moderní ekonometrii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Serbian Journal of Management

  • ISSN

    1452-4864

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    RS - Srbská republika

  • Počet stran výsledku

    13

  • Strana od-do

    171-183

  • Kód UT WoS článku

    000443474000012

  • EID výsledku v databázi Scopus

    2-s2.0-85018191894