High-dimensional data in economics and their (robust) analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00474076" target="_blank" >RIV/67985556:_____/17:00474076 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/17:00473577
Výsledek na webu
<a href="http://dx.doi.org/10.5937/sjm12-10778" target="_blank" >http://dx.doi.org/10.5937/sjm12-10778</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5937/sjm12-10778" target="_blank" >10.5937/sjm12-10778</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-dimensional data in economics and their (robust) analysis
Popis výsledku v původním jazyce
This work is devoted to statistical methods for the analysis of economic data with a large number of variables. The authors present a review of references documenting that such data are more and more commonly available in various theoretical and applied economic problems and their analysis can be hardly performed with standard econometric methods. The paper is focused on highdimensional data, which have a small number of observations, and gives an overview of recently proposed methods for their analysis in the context of econometrics, particularly in the areas of dimensionality reduction, linear regression and classification analysis. Further, the performance of various methods is illustrated on a publicly available benchmark data set on credit scoring. In comparison with other authors, robust methods designed to be insensitive to the presence of outlying measurements are also used. Their strength is revealed after adding an artificial contamination by noise to the original data. In addition, the performance of various methods for a prior dimensionality reduction of the data is compared.
Název v anglickém jazyce
High-dimensional data in economics and their (robust) analysis
Popis výsledku anglicky
This work is devoted to statistical methods for the analysis of economic data with a large number of variables. The authors present a review of references documenting that such data are more and more commonly available in various theoretical and applied economic problems and their analysis can be hardly performed with standard econometric methods. The paper is focused on highdimensional data, which have a small number of observations, and gives an overview of recently proposed methods for their analysis in the context of econometrics, particularly in the areas of dimensionality reduction, linear regression and classification analysis. Further, the performance of various methods is illustrated on a publicly available benchmark data set on credit scoring. In comparison with other authors, robust methods designed to be insensitive to the presence of outlying measurements are also used. Their strength is revealed after adding an artificial contamination by noise to the original data. In addition, the performance of various methods for a prior dimensionality reduction of the data is compared.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-07384S" target="_blank" >GA17-07384S: Neparametrické (statistické) metody v moderní ekonometrii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Serbian Journal of Management
ISSN
1452-4864
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
RS - Srbská republika
Počet stran výsledku
13
Strana od-do
171-183
Kód UT WoS článku
000443474000012
EID výsledku v databázi Scopus
2-s2.0-85018191894