Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Some Robust Approaches to Reducing the Complexity of Economic Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00583575" target="_blank" >RIV/67985556:_____/23:00583575 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/23:00581699

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Some Robust Approaches to Reducing the Complexity of Economic Data

  • Popis výsledku v původním jazyce

    The recent advent of complex (and potentially big) data in economics requires modern and effective tools for their analysis including tools for reducing the dimensionality (complexity) of the given data. This paper starts with recalling the importance of Big Data in economics and with characterizing the main categories of dimension reduction techniques. While there have already been numerous techniques for dimensionality reduction available, this work is interested in methods that are robust to the presence of outlying measurements (outliers) in the economic data. Particularly, methods based on implicit weighting assigned to individual observations are developed in this paper. As the main contribution, this paper proposes three novel robust methods of dimension reduction. One method is a dimension reduction within a robust regularized linear regression, namely a sparse version of the least weighted squares estimator. The other two methods are robust versions of feature extraction methods popular in econometrics: robust principal component analysis and robust factor analysis.

  • Název v anglickém jazyce

    Some Robust Approaches to Reducing the Complexity of Economic Data

  • Popis výsledku anglicky

    The recent advent of complex (and potentially big) data in economics requires modern and effective tools for their analysis including tools for reducing the dimensionality (complexity) of the given data. This paper starts with recalling the importance of Big Data in economics and with characterizing the main categories of dimension reduction techniques. While there have already been numerous techniques for dimensionality reduction available, this work is interested in methods that are robust to the presence of outlying measurements (outliers) in the economic data. Particularly, methods based on implicit weighting assigned to individual observations are developed in this paper. As the main contribution, this paper proposes three novel robust methods of dimension reduction. One method is a dimension reduction within a robust regularized linear regression, namely a sparse version of the least weighted squares estimator. The other two methods are robust versions of feature extraction methods popular in econometrics: robust principal component analysis and robust factor analysis.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-05325S" target="_blank" >GA21-05325S: Moderní neparametrické metody v ekonometrii</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The 17th International Days of Statistics and Economics Conference Proceedings

  • ISBN

    978-80-87990-31-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    246-255

  • Název nakladatele

    Melandrium

  • Místo vydání

    Praha

  • Místo konání akce

    Praha

  • Datum konání akce

    7. 9. 2023

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku