Some Robust Approaches to Reducing the Complexity of Economic Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00583575" target="_blank" >RIV/67985556:_____/23:00583575 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/23:00581699
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Some Robust Approaches to Reducing the Complexity of Economic Data
Popis výsledku v původním jazyce
The recent advent of complex (and potentially big) data in economics requires modern and effective tools for their analysis including tools for reducing the dimensionality (complexity) of the given data. This paper starts with recalling the importance of Big Data in economics and with characterizing the main categories of dimension reduction techniques. While there have already been numerous techniques for dimensionality reduction available, this work is interested in methods that are robust to the presence of outlying measurements (outliers) in the economic data. Particularly, methods based on implicit weighting assigned to individual observations are developed in this paper. As the main contribution, this paper proposes three novel robust methods of dimension reduction. One method is a dimension reduction within a robust regularized linear regression, namely a sparse version of the least weighted squares estimator. The other two methods are robust versions of feature extraction methods popular in econometrics: robust principal component analysis and robust factor analysis.
Název v anglickém jazyce
Some Robust Approaches to Reducing the Complexity of Economic Data
Popis výsledku anglicky
The recent advent of complex (and potentially big) data in economics requires modern and effective tools for their analysis including tools for reducing the dimensionality (complexity) of the given data. This paper starts with recalling the importance of Big Data in economics and with characterizing the main categories of dimension reduction techniques. While there have already been numerous techniques for dimensionality reduction available, this work is interested in methods that are robust to the presence of outlying measurements (outliers) in the economic data. Particularly, methods based on implicit weighting assigned to individual observations are developed in this paper. As the main contribution, this paper proposes three novel robust methods of dimension reduction. One method is a dimension reduction within a robust regularized linear regression, namely a sparse version of the least weighted squares estimator. The other two methods are robust versions of feature extraction methods popular in econometrics: robust principal component analysis and robust factor analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-05325S" target="_blank" >GA21-05325S: Moderní neparametrické metody v ekonometrii</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 17th International Days of Statistics and Economics Conference Proceedings
ISBN
978-80-87990-31-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
246-255
Název nakladatele
Melandrium
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
7. 9. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—