Robust Knowledge Discovery from High-Dimensional Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00389647" target="_blank" >RIV/67985807:_____/12:00389647 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Knowledge Discovery from High-Dimensional Data
Popis výsledku v původním jazyce
The paper is devoted to advanced robust methods for information extraction from highdimensional data. The concept of knowledge discovery is discussed together with its two important aspects: high dimensionality of the data and sensitivity to the presenceof outlying data values. We propose new robust methods for knowledge discovery suitable for highdimensional data. They are based on the idea of implicit weighting, which is inspired by the least weighted squares regression estimator. We propose a highlyrobust method for a dimension reduction, which can be described as a robust alternative of the principal component analysis based on implicit down-weighting of less reliable data values. Further, we propose a novel robust approach to cluster analysis, which is a popular knowledge discovery method of unsupervised learning. A two-stage cluster analysis method tailor-made for highdimensional data is obtained by combining the robust principal component analysis with the robust cluster analy
Název v anglickém jazyce
Robust Knowledge Discovery from High-Dimensional Data
Popis výsledku anglicky
The paper is devoted to advanced robust methods for information extraction from highdimensional data. The concept of knowledge discovery is discussed together with its two important aspects: high dimensionality of the data and sensitivity to the presenceof outlying data values. We propose new robust methods for knowledge discovery suitable for highdimensional data. They are based on the idea of implicit weighting, which is inspired by the least weighted squares regression estimator. We propose a highlyrobust method for a dimension reduction, which can be described as a robust alternative of the principal component analysis based on implicit down-weighting of less reliable data values. Further, we propose a novel robust approach to cluster analysis, which is a popular knowledge discovery method of unsupervised learning. A two-stage cluster analysis method tailor-made for highdimensional data is obtained by combining the robust principal component analysis with the robust cluster analy
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International collection of scientific work on the occasion of 60th anniversary of university education at faculty of Business Economy with seat in Košice of University of Economics in Bratislava
ISBN
978-80-86175-80-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
Melandrium
Místo vydání
Slaný
Místo konání akce
Prague
Datum konání akce
13. 9. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—