Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust Regularized Cluster Analysis for High-Dimensional Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00431648" target="_blank" >RIV/67985807:_____/14:00431648 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust Regularized Cluster Analysis for High-Dimensional Data

  • Popis výsledku v původním jazyce

    This paper presents new approaches to the hierarchical agglomerative cluster analysis for high-dimensional data. First, we propose a regularized version of the hierarchical cluster analysis for categorical data with a large number of categories. It exploits a regularized version of various test statistics of homogeneity in contingency tables as the measure of distance between two clusters. Further, our aim is cluster analysis of continuous data with a large number of variables. Various regularization techniques tailor-made for high-dimensional data have been proposed, which have however turned out to suffer from a high sensitivity to the presence of outlying measurements in the data. As a robust solution, we recommend to combine two newly proposed methods, namely a regularized version of robust principal component analysis and a regularized Mahalanobis distance, which is based on an asymptotically optimal regularization of the covariance matrix. We bring arguments in favor of the newly

  • Název v anglickém jazyce

    Robust Regularized Cluster Analysis for High-Dimensional Data

  • Popis výsledku anglicky

    This paper presents new approaches to the hierarchical agglomerative cluster analysis for high-dimensional data. First, we propose a regularized version of the hierarchical cluster analysis for categorical data with a large number of categories. It exploits a regularized version of various test statistics of homogeneity in contingency tables as the measure of distance between two clusters. Further, our aim is cluster analysis of continuous data with a large number of variables. Various regularization techniques tailor-made for high-dimensional data have been proposed, which have however turned out to suffer from a high sensitivity to the presence of outlying measurements in the data. As a robust solution, we recommend to combine two newly proposed methods, namely a regularized version of robust principal component analysis and a regularized Mahalanobis distance, which is based on an asymptotically optimal regularization of the covariance matrix. We bring arguments in favor of the newly

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-17187S" target="_blank" >GA13-17187S: Konstrukce pokročilých srozumitelných klasifikátorů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 32nd International Conference Mathematical Methods in Economics MME 2014

  • ISBN

    978-80-244-4209-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    378-383

  • Název nakladatele

    Palacký University

  • Místo vydání

    Olomouc

  • Místo konání akce

    Olomouc

  • Datum konání akce

    10. 9. 2014

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku