Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Some Robust Distances for Multivariate Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00462922" target="_blank" >RIV/67985807:_____/16:00462922 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Some Robust Distances for Multivariate Data

  • Popis výsledku v původním jazyce

    Numerous methods of multivariate statistics and data mining suffer from the presence of outlying measurements in the data. This paper presents new distance measures suitable for continuous data. First, we consider a Mahalanobis distance suitable for high-dimensional data with the number of variables (largely) exceeding the number of observations. We propose its doubly regularized version, which combines a regularization of the covariance matrix with replacing the means of multivariate data by their regularized counterparts. We formulate explicit expressions for some versions of the regularization of the means, which can be interpreted as a denoising (i.e. robust version) of standard means. Further, we propose a robust cosine similarity measure, which is based on implicit weighting of individual observations. We derive properties of the newly proposed robust cosine similarity, which includes a proof of the high robustness in terms of the breakdown point.

  • Název v anglickém jazyce

    Some Robust Distances for Multivariate Data

  • Popis výsledku anglicky

    Numerous methods of multivariate statistics and data mining suffer from the presence of outlying measurements in the data. This paper presents new distance measures suitable for continuous data. First, we consider a Mahalanobis distance suitable for high-dimensional data with the number of variables (largely) exceeding the number of observations. We propose its doubly regularized version, which combines a regularization of the covariance matrix with replacing the means of multivariate data by their regularized counterparts. We formulate explicit expressions for some versions of the regularization of the means, which can be interpreted as a denoising (i.e. robust version) of standard means. Further, we propose a robust cosine similarity measure, which is based on implicit weighting of individual observations. We derive properties of the newly proposed robust cosine similarity, which includes a proof of the high robustness in terms of the breakdown point.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 34th International Conference Mathematical Methods in Economics MME 2016

  • ISBN

    978-80-7494-296-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    365-370

  • Název nakladatele

    Technical University

  • Místo vydání

    Liberec

  • Místo konání akce

    Liberec

  • Datum konání akce

    6. 9. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000385239500063