Approximation of Unknown Multivariate Probability Distributions by Using Mixtures of Product Components: A Tutorial
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00475182" target="_blank" >RIV/67985556:_____/17:00475182 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0218001417500288" target="_blank" >http://dx.doi.org/10.1142/S0218001417500288</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218001417500288" target="_blank" >10.1142/S0218001417500288</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximation of Unknown Multivariate Probability Distributions by Using Mixtures of Product Components: A Tutorial
Popis výsledku v původním jazyce
In literature the references to EM estimation of product mixtures are not very frequent. The simplifying assumption of product components, e.g. diagonal covariance matrices in case of Gaussian mixtures, is usually considered only as a compromise because of some computational constraints or limited data set. We have found that the product mixtures are rarely used intentionally as a preferable approximating tool. Probably, most practitioners do not „trust“ the product components because of their formal similarity to „naive Bayes models“. Another reason could be an unrecognized numerical instability of EM algorithm in multidimensional spaces. In this paper we recall that the product mixture model does not imply the assumption of independence of variables. It is even not restrictive if the number of components is large enough. In addition, the product components increase numerical stability of the standard EM algorithm, simplify the EM iterations and have some other important advantages. We discuss and explain the implementation details of EM algorithm and summarize our experience in estimating product mixtures. Finally we illustrate the wide applicability of product mixtures in pattern recognition and in other fields.
Název v anglickém jazyce
Approximation of Unknown Multivariate Probability Distributions by Using Mixtures of Product Components: A Tutorial
Popis výsledku anglicky
In literature the references to EM estimation of product mixtures are not very frequent. The simplifying assumption of product components, e.g. diagonal covariance matrices in case of Gaussian mixtures, is usually considered only as a compromise because of some computational constraints or limited data set. We have found that the product mixtures are rarely used intentionally as a preferable approximating tool. Probably, most practitioners do not „trust“ the product components because of their formal similarity to „naive Bayes models“. Another reason could be an unrecognized numerical instability of EM algorithm in multidimensional spaces. In this paper we recall that the product mixture model does not imply the assumption of independence of variables. It is even not restrictive if the number of components is large enough. In addition, the product components increase numerical stability of the standard EM algorithm, simplify the EM iterations and have some other important advantages. We discuss and explain the implementation details of EM algorithm and summarize our experience in estimating product mixtures. Finally we illustrate the wide applicability of product mixtures in pattern recognition and in other fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-18407S" target="_blank" >GA17-18407S: Vizuálně optimalizované měření vzhledu materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Pattern Recognition and Artificial Intelligence
ISSN
0218-0014
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
37
Strana od-do
—
Kód UT WoS článku
000402745500001
EID výsledku v databázi Scopus
2-s2.0-85016474470