Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Directional quantile regression in R

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00476587" target="_blank" >RIV/67985556:_____/17:00476587 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.14736/kyb-2017-3-0480" target="_blank" >http://dx.doi.org/10.14736/kyb-2017-3-0480</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14736/kyb-2017-3-0480" target="_blank" >10.14736/kyb-2017-3-0480</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Directional quantile regression in R

  • Popis výsledku v původním jazyce

    Recently, the eminently popular standard quantile regression has been generalized to the multiple-output regression setup by means of directional regression quantiles in two rather interrelated ways. Unfortunately, they lead to complicated optimization problems involving parametric programming, and this may be the main obstacle standing in the way of their wide dissemination. The presented R package modQR is intended to address this issue. It originates as a quite faithful translation of the authors' moQuantile toolbox for Octave and MATLAB, and provides all the necessary computational support for both the directional multiple-output quantile regression methods to the wide statistical public. The article offers a concise summary of the statistical theory behind modQR, overviews the package in brief, points out its departures from moQuantile, comments on its use and performance, and demonstrates its application.

  • Název v anglickém jazyce

    Directional quantile regression in R

  • Popis výsledku anglicky

    Recently, the eminently popular standard quantile regression has been generalized to the multiple-output regression setup by means of directional regression quantiles in two rather interrelated ways. Unfortunately, they lead to complicated optimization problems involving parametric programming, and this may be the main obstacle standing in the way of their wide dissemination. The presented R package modQR is intended to address this issue. It originates as a quite faithful translation of the authors' moQuantile toolbox for Octave and MATLAB, and provides all the necessary computational support for both the directional multiple-output quantile regression methods to the wide statistical public. The article offers a concise summary of the statistical theory behind modQR, overviews the package in brief, points out its departures from moQuantile, comments on its use and performance, and demonstrates its application.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-07234S" target="_blank" >GA14-07234S: Mnohorozměrné regresní kvantily v ekonometrii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Svazek periodika

    53

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    13

  • Strana od-do

    480-492

  • Kód UT WoS článku

    000407667400006

  • EID výsledku v databázi Scopus

    2-s2.0-85026546598