Feature Selection on Affine Moment Invariants in Relation to Known Dependencies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00476980" target="_blank" >RIV/67985556:_____/17:00476980 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-64698-5_24" target="_blank" >http://dx.doi.org/10.1007/978-3-319-64698-5_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-64698-5_24" target="_blank" >10.1007/978-3-319-64698-5_24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature Selection on Affine Moment Invariants in Relation to Known Dependencies
Popis výsledku v původním jazyce
Moment invariants are one of the techniques of feature extraction frequently used for pattern recognition algorithms. A moment is a projection of function into polynomial basis and an invariant is a function returning the same value for an input with and without particular class of degradation. Several techniques of moment invariant creation exist often generating over-complete set of invariants. Dependencies in these sets are commonly in a form of complicated polynomials, further-nmore they can contain dependencies of higher orders. These theoretical dependencies are valid in the continuous domain but it is well known that in discrete cases are often invalidated by discretization. Therefore, it would be feasible to begin classi cation with such an over-completenset and adaptively nd the pseudo-independent set of invariants by the means of feature selection techniques. This study focuses on testing of the infuence of theoretical invariant dependencies in discrete pattern recognition applications.
Název v anglickém jazyce
Feature Selection on Affine Moment Invariants in Relation to Known Dependencies
Popis výsledku anglicky
Moment invariants are one of the techniques of feature extraction frequently used for pattern recognition algorithms. A moment is a projection of function into polynomial basis and an invariant is a function returning the same value for an input with and without particular class of degradation. Several techniques of moment invariant creation exist often generating over-complete set of invariants. Dependencies in these sets are commonly in a form of complicated polynomials, further-nmore they can contain dependencies of higher orders. These theoretical dependencies are valid in the continuous domain but it is well known that in discrete cases are often invalidated by discretization. Therefore, it would be feasible to begin classi cation with such an over-completenset and adaptively nd the pseudo-independent set of invariants by the means of feature selection techniques. This study focuses on testing of the infuence of theoretical invariant dependencies in discrete pattern recognition applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-16928S" target="_blank" >GA15-16928S: Invarianty a adaptivní reprezentace digitálních obrazů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Analysis of Images and Patterns : 17th International Conference, CAIP 2017
ISBN
978-3-319-64698-5
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
285-295
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ystad
Datum konání akce
22. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000432084600024