Semidefinite approximations of invariant measures for polynomial systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00334317" target="_blank" >RIV/68407700:21230/19:00334317 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3934/dcdsb.2019165" target="_blank" >https://doi.org/10.3934/dcdsb.2019165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdsb.2019165" target="_blank" >10.3934/dcdsb.2019165</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semidefinite approximations of invariant measures for polynomial systems
Popis výsledku v původním jazyce
We consider the problem of approximating numerically the moments and the supports of measures which are invariant with respect to the dynamics of continuous- and discrete-time polynomial systems, under semialgebraic set constraints. First, we address the problem of approximating the density and hence the support of an invariant measure which is absolutely continuous with respect to the Lebesgue measure. Then, we focus on the approximation of the support of an invariant measure which is singular with respect to the Lebesgue measure. Each problem is handled through an appropriate reformulation into a conic optimization problem over measures, solved in practice with two hierarchies of finite-dimensional semidefinite moment-sum-of-square relaxations, also called Lasserre hierarchies.Under specific assumptions, the first Lasserre hierarchy allows to approximate the moments of an absolutely continuous invariant measure as close as desired and to extract a sequence of polynomials converging weakly to the density of this measure.The second Lasserre hierarchy allows to approximate as close as desired in the Hausdorff metric the support of a singular invariant measure with the level sets of the Christoffel polynomials associated to the moment matrices of this measure.We also present some application examples together with numerical results for several dynamical systems admitting either absolutely continuous or singular invariant measures.
Název v anglickém jazyce
Semidefinite approximations of invariant measures for polynomial systems
Popis výsledku anglicky
We consider the problem of approximating numerically the moments and the supports of measures which are invariant with respect to the dynamics of continuous- and discrete-time polynomial systems, under semialgebraic set constraints. First, we address the problem of approximating the density and hence the support of an invariant measure which is absolutely continuous with respect to the Lebesgue measure. Then, we focus on the approximation of the support of an invariant measure which is singular with respect to the Lebesgue measure. Each problem is handled through an appropriate reformulation into a conic optimization problem over measures, solved in practice with two hierarchies of finite-dimensional semidefinite moment-sum-of-square relaxations, also called Lasserre hierarchies.Under specific assumptions, the first Lasserre hierarchy allows to approximate the moments of an absolutely continuous invariant measure as close as desired and to extract a sequence of polynomials converging weakly to the density of this measure.The second Lasserre hierarchy allows to approximate as close as desired in the Hausdorff metric the support of a singular invariant measure with the level sets of the Christoffel polynomials associated to the moment matrices of this measure.We also present some application examples together with numerical results for several dynamical systems admitting either absolutely continuous or singular invariant measures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Continuous Dynamical Systems - B
ISSN
1531-3492
e-ISSN
1553-524X
Svazek periodika
24
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
6745-6770
Kód UT WoS článku
000484545100021
EID výsledku v databázi Scopus
2-s2.0-85072559809