Stokes, Gibbs, and Volume Computation of Semi-Algebraic Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00363281" target="_blank" >RIV/68407700:21230/23:00363281 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00454-022-00462-0" target="_blank" >https://doi.org/10.1007/s00454-022-00462-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-022-00462-0" target="_blank" >10.1007/s00454-022-00462-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stokes, Gibbs, and Volume Computation of Semi-Algebraic Sets
Popis výsledku v původním jazyce
We consider the problem of computing the Lebesgue volume of compact basic semi-algebraic sets. In full generality, it can be approximated as closely as desired by a converging hierarchy of upper bounds obtained by applying the Moment-SOS (sums of squares) methodology to a certain infinite-dimensional linear program (LP). At each step one solves a semidefinite relaxation of the LP which involves pseudo-moments up to a certain degree. Its dual computes a polynomial of same degree which approximates from above the discontinuous indicator function of the set, hence with a typical Gibbs phenomenon which results in a slow convergence of the associated numerical scheme. Drastic improvements have been observed by introducing in the initial LP additional linear moment constraints obtained from a certain application of Stokes' theorem for integration on the set. However and so far there was no rationale to explain this behavior. We provide a refined version of this extended LP formulation. When the set is the smooth super-level set of a single polynomial, we show that the dual of this refined LP has an optimal solution which is a continuous function. Therefore in this dual one now approximates a continuous function by a polynomial, hence with no Gibbs phenomenon, which explains and improves the already observed drastic acceleration of the convergence of the hierarchy. Interestingly, the technique of proof involves recent results on Poisson's partial differential equation (PDE).
Název v anglickém jazyce
Stokes, Gibbs, and Volume Computation of Semi-Algebraic Sets
Popis výsledku anglicky
We consider the problem of computing the Lebesgue volume of compact basic semi-algebraic sets. In full generality, it can be approximated as closely as desired by a converging hierarchy of upper bounds obtained by applying the Moment-SOS (sums of squares) methodology to a certain infinite-dimensional linear program (LP). At each step one solves a semidefinite relaxation of the LP which involves pseudo-moments up to a certain degree. Its dual computes a polynomial of same degree which approximates from above the discontinuous indicator function of the set, hence with a typical Gibbs phenomenon which results in a slow convergence of the associated numerical scheme. Drastic improvements have been observed by introducing in the initial LP additional linear moment constraints obtained from a certain application of Stokes' theorem for integration on the set. However and so far there was no rationale to explain this behavior. We provide a refined version of this extended LP formulation. When the set is the smooth super-level set of a single polynomial, we show that the dual of this refined LP has an optimal solution which is a continuous function. Therefore in this dual one now approximates a continuous function by a polynomial, hence with no Gibbs phenomenon, which explains and improves the already observed drastic acceleration of the convergence of the hierarchy. Interestingly, the technique of proof involves recent results on Poisson's partial differential equation (PDE).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete & Computational Geometry
ISSN
0179-5376
e-ISSN
1432-0444
Svazek periodika
69
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
260-283
Kód UT WoS článku
001179763600001
EID výsledku v databázi Scopus
2-s2.0-85144669648