Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00347993" target="_blank" >RIV/68407700:21230/21:00347993 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00332-020-09658-1" target="_blank" >https://doi.org/10.1007/s00332-020-09658-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00332-020-09658-1" target="_blank" >10.1007/s00332-020-09658-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes
Popis výsledku v původním jazyce
We propose a convex-optimization-based framework for computation of invariant measures of polynomial dynamical systems and Markov processes, in discrete and continuous time. The set of all invariant measures is characterized as the feasible set of an infinite-dimensional linear program (LP). The objective functional of this LP is then used to single out a specific measure (or a class of measures) extremal with respect to the selected functional such as physical measures, ergodic measures, atomic measures (corresponding to, e.g., periodic orbits) or measures absolutely continuous w.r.t. to a given measure. The infinite-dimensional LP is then approximated using a standard hierarchy of finite-dimensional semidefinite programming problems, the solutions of which are truncated moment sequences, which are then used to reconstruct the measure. In particular, we show how to approximate the support of the measure as well as how to construct a sequence of weakly converging absolutely continuous approximations. As a by-product, we present a simple method to certify the nonexistence of an invariant measure, which is an important question in the theory of Markov processes. The presented framework, where a convex functional is minimized or maximized among all invariant measures, can be seen as a generalization of and a computational method to carry out the so-called ergodic optimization, where linear functionals are optimized over the set of invariant measures. Finally, we also describe how the presented framework can be adapted to compute eigenmeasures of the Perron-Frobenius operator.
Název v anglickém jazyce
Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes
Popis výsledku anglicky
We propose a convex-optimization-based framework for computation of invariant measures of polynomial dynamical systems and Markov processes, in discrete and continuous time. The set of all invariant measures is characterized as the feasible set of an infinite-dimensional linear program (LP). The objective functional of this LP is then used to single out a specific measure (or a class of measures) extremal with respect to the selected functional such as physical measures, ergodic measures, atomic measures (corresponding to, e.g., periodic orbits) or measures absolutely continuous w.r.t. to a given measure. The infinite-dimensional LP is then approximated using a standard hierarchy of finite-dimensional semidefinite programming problems, the solutions of which are truncated moment sequences, which are then used to reconstruct the measure. In particular, we show how to approximate the support of the measure as well as how to construct a sequence of weakly converging absolutely continuous approximations. As a by-product, we present a simple method to certify the nonexistence of an invariant measure, which is an important question in the theory of Markov processes. The presented framework, where a convex functional is minimized or maximized among all invariant measures, can be seen as a generalization of and a computational method to carry out the so-called ergodic optimization, where linear functionals are optimized over the set of invariant measures. Finally, we also describe how the presented framework can be adapted to compute eigenmeasures of the Perron-Frobenius operator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koncept Koopmanova operátoru pro řízení komplexních nelineárních dynamických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of nonlinear science
ISSN
0938-8974
e-ISSN
1432-1467
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000608016800006
EID výsledku v databázi Scopus
2-s2.0-85098892294