Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00347993" target="_blank" >RIV/68407700:21230/21:00347993 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00332-020-09658-1" target="_blank" >https://doi.org/10.1007/s00332-020-09658-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00332-020-09658-1" target="_blank" >10.1007/s00332-020-09658-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes

  • Popis výsledku v původním jazyce

    We propose a convex-optimization-based framework for computation of invariant measures of polynomial dynamical systems and Markov processes, in discrete and continuous time. The set of all invariant measures is characterized as the feasible set of an infinite-dimensional linear program (LP). The objective functional of this LP is then used to single out a specific measure (or a class of measures) extremal with respect to the selected functional such as physical measures, ergodic measures, atomic measures (corresponding to, e.g., periodic orbits) or measures absolutely continuous w.r.t. to a given measure. The infinite-dimensional LP is then approximated using a standard hierarchy of finite-dimensional semidefinite programming problems, the solutions of which are truncated moment sequences, which are then used to reconstruct the measure. In particular, we show how to approximate the support of the measure as well as how to construct a sequence of weakly converging absolutely continuous approximations. As a by-product, we present a simple method to certify the nonexistence of an invariant measure, which is an important question in the theory of Markov processes. The presented framework, where a convex functional is minimized or maximized among all invariant measures, can be seen as a generalization of and a computational method to carry out the so-called ergodic optimization, where linear functionals are optimized over the set of invariant measures. Finally, we also describe how the presented framework can be adapted to compute eigenmeasures of the Perron-Frobenius operator.

  • Název v anglickém jazyce

    Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes

  • Popis výsledku anglicky

    We propose a convex-optimization-based framework for computation of invariant measures of polynomial dynamical systems and Markov processes, in discrete and continuous time. The set of all invariant measures is characterized as the feasible set of an infinite-dimensional linear program (LP). The objective functional of this LP is then used to single out a specific measure (or a class of measures) extremal with respect to the selected functional such as physical measures, ergodic measures, atomic measures (corresponding to, e.g., periodic orbits) or measures absolutely continuous w.r.t. to a given measure. The infinite-dimensional LP is then approximated using a standard hierarchy of finite-dimensional semidefinite programming problems, the solutions of which are truncated moment sequences, which are then used to reconstruct the measure. In particular, we show how to approximate the support of the measure as well as how to construct a sequence of weakly converging absolutely continuous approximations. As a by-product, we present a simple method to certify the nonexistence of an invariant measure, which is an important question in the theory of Markov processes. The presented framework, where a convex functional is minimized or maximized among all invariant measures, can be seen as a generalization of and a computational method to carry out the so-called ergodic optimization, where linear functionals are optimized over the set of invariant measures. Finally, we also describe how the presented framework can be adapted to compute eigenmeasures of the Perron-Frobenius operator.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koncept Koopmanova operátoru pro řízení komplexních nelineárních dynamických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of nonlinear science

  • ISSN

    0938-8974

  • e-ISSN

    1432-1467

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    26

  • Strana od-do

  • Kód UT WoS článku

    000608016800006

  • EID výsledku v databázi Scopus

    2-s2.0-85098892294