Avoiding overfitting of models: an application to research data on the Internet videos
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00481488" target="_blank" >RIV/67985556:_____/17:00481488 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Avoiding overfitting of models: an application to research data on the Internet videos
Popis výsledku v původním jazyce
The problem of overfitting is studied from the perspective of information theory. In this context, data-based model learning can be viewed as a transformation process, a process transforming the information contained in data into the information represented by a model. The overfitting of a model often occurs when one considers an unnecessarily complex model, which usually means that the considered model contains more information than the original data. Thus, using one of the basic laws of information theory saying that any transformation cannot increase the amount of information, we get the basic restriction laid on models constructed from data: A model is acceptable if it does not contain more information than the input data file.
Název v anglickém jazyce
Avoiding overfitting of models: an application to research data on the Internet videos
Popis výsledku anglicky
The problem of overfitting is studied from the perspective of information theory. In this context, data-based model learning can be viewed as a transformation process, a process transforming the information contained in data into the information represented by a model. The overfitting of a model often occurs when one considers an unnecessarily complex model, which usually means that the considered model contains more information than the original data. Thus, using one of the basic laws of information theory saying that any transformation cannot increase the amount of information, we get the basic restriction laid on models constructed from data: A model is acceptable if it does not contain more information than the input data file.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 35th International Conference Mathematical Methods in Economics (MME 2017)
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
289-294
Název nakladatele
University of Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—