Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Avoiding overfitting of models: an application to research data on the Internet videos

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00481488" target="_blank" >RIV/67985556:_____/17:00481488 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Avoiding overfitting of models: an application to research data on the Internet videos

  • Popis výsledku v původním jazyce

    The problem of overfitting is studied from the perspective of information theory. In this context, data-based model learning can be viewed as a transformation process, a process transforming the information contained in data into the information represented by a model. The overfitting of a model often occurs when one considers an unnecessarily complex model, which usually means that the considered model contains more information than the original data. Thus, using one of the basic laws of information theory saying that any transformation cannot increase the amount of information, we get the basic restriction laid on models constructed from data: A model is acceptable if it does not contain more information than the input data file.

  • Název v anglickém jazyce

    Avoiding overfitting of models: an application to research data on the Internet videos

  • Popis výsledku anglicky

    The problem of overfitting is studied from the perspective of information theory. In this context, data-based model learning can be viewed as a transformation process, a process transforming the information contained in data into the information represented by a model. The overfitting of a model often occurs when one considers an unnecessarily complex model, which usually means that the considered model contains more information than the original data. Thus, using one of the basic laws of information theory saying that any transformation cannot increase the amount of information, we get the basic restriction laid on models constructed from data: A model is acceptable if it does not contain more information than the input data file.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 35th International Conference Mathematical Methods in Economics (MME 2017)

  • ISBN

    978-80-7435-678-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    289-294

  • Název nakladatele

    University of Hradec Králové

  • Místo vydání

    Hradec Králové

  • Místo konání akce

    Hradec Králové

  • Datum konání akce

    13. 9. 2017

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku