Pathwise duals of monotone and additive Markov processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00465436" target="_blank" >RIV/67985556:_____/18:00465436 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10959-016-0721-5" target="_blank" >http://dx.doi.org/10.1007/s10959-016-0721-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10959-016-0721-5" target="_blank" >10.1007/s10959-016-0721-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pathwise duals of monotone and additive Markov processes
Popis výsledku v původním jazyce
This paper develops a systematic treatment of monotonicity-based pathwise dualities for Markov processes taking values in partially ordered sets. We show that every Markov process that takes values in a finite partially ordered set and whose generator can be represented in monotone maps has a pathwise dual process. In the special setting of attractive spin systems this has been discovered earlier by Gray. We show that the dual simplifies a lot when the state space is a lattice (in the order-theoretic meaning of the word) and all monotone maps satisfy an additivity condition. This leads to a unified treatment of several well-known dualities, including Siegmund's dual for processes with a totally ordered state space, duality of additive spin systems, and a duality due to Krone for the two-stage contact process, and allows for the construction of new dualities as well.
Název v anglickém jazyce
Pathwise duals of monotone and additive Markov processes
Popis výsledku anglicky
This paper develops a systematic treatment of monotonicity-based pathwise dualities for Markov processes taking values in partially ordered sets. We show that every Markov process that takes values in a finite partially ordered set and whose generator can be represented in monotone maps has a pathwise dual process. In the special setting of attractive spin systems this has been discovered earlier by Gray. We show that the dual simplifies a lot when the state space is a lattice (in the order-theoretic meaning of the word) and all monotone maps satisfy an additivity condition. This leads to a unified treatment of several well-known dualities, including Siegmund's dual for processes with a totally ordered state space, duality of additive spin systems, and a duality due to Krone for the two-stage contact process, and allows for the construction of new dualities as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F12%2F2613" target="_blank" >GAP201/12/2613: Prahové jevy pro stochastické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical Probability
ISSN
0894-9840
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
52
Strana od-do
932-983
Kód UT WoS článku
000432743300012
EID výsledku v databázi Scopus
2-s2.0-84994716320