Applying monoid duality to a double contact process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00572568" target="_blank" >RIV/67985556:_____/23:00572568 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10465394
Výsledek na webu
<a href="https://projecteuclid.org/journals/electronic-journal-of-probability/volume-28/issue-none/Applying-monoid-duality-to-a-double-contact-process/10.1214/23-EJP961.full" target="_blank" >https://projecteuclid.org/journals/electronic-journal-of-probability/volume-28/issue-none/Applying-monoid-duality-to-a-double-contact-process/10.1214/23-EJP961.full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/23-EJP961" target="_blank" >10.1214/23-EJP961</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applying monoid duality to a double contact process
Popis výsledku v původním jazyce
In this paper we use duality techniques to study a coupling of the well-known contact process (CP) and the annihilating branching process. As the latter can be seen as a cancellative version of the contact process, we rebrand it as the cancellative contact process (cCP). Our process of interest will consist of two components, the first being a CP and the second being a cCP. We call this process the double contact process (2CP) and prove that it has (depending on the model parameters) at most one invariant law under which ones are present in both processes. In particular, we can choose the model parameters in such a way that CP and cCP are monotonely coupled. In this case also the above mentioned invariant law will have the property that, under it, ones (modeling “infected individuals”) can only be present in the cCP at sites where there are also ones in the CP. Along the way we extend the dualities for Markov processes discovered in our paper “Commutative monoid duality” to processes on infinite state spaces so that they, in particular, can be used for interacting particle systems.
Název v anglickém jazyce
Applying monoid duality to a double contact process
Popis výsledku anglicky
In this paper we use duality techniques to study a coupling of the well-known contact process (CP) and the annihilating branching process. As the latter can be seen as a cancellative version of the contact process, we rebrand it as the cancellative contact process (cCP). Our process of interest will consist of two components, the first being a CP and the second being a cCP. We call this process the double contact process (2CP) and prove that it has (depending on the model parameters) at most one invariant law under which ones are present in both processes. In particular, we can choose the model parameters in such a way that CP and cCP are monotonely coupled. In this case also the above mentioned invariant law will have the property that, under it, ones (modeling “infected individuals”) can only be present in the cCP at sites where there are also ones in the CP. Along the way we extend the dualities for Markov processes discovered in our paper “Commutative monoid duality” to processes on infinite state spaces so that they, in particular, can be used for interacting particle systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-08468S" target="_blank" >GA20-08468S: Limity interagujících stochastických modelů na velkých škálách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Probability
ISSN
1083-6489
e-ISSN
1083-6489
Svazek periodika
28
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
70
Kód UT WoS článku
001002487000001
EID výsledku v databázi Scopus
2-s2.0-85162844943