Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Marginalized approximate filtering of state-space models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00478074" target="_blank" >RIV/67985556:_____/18:00478074 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/acs.2821" target="_blank" >http://dx.doi.org/10.1002/acs.2821</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/acs.2821" target="_blank" >10.1002/acs.2821</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Marginalized approximate filtering of state-space models

  • Popis výsledku v původním jazyce

    The marginalized particle filtering (MPF) is a powerful technique reducing the number of particles necessary to effectively estimate hidden states of state-space models. This paper alleviates the assumption of a fully known and computationally tractable observation model. Exploiting the recent developments in the theory of approximate Bayesian computation (ABC) filtration, an ABC counterpart of MPF is proposed, applicable when the observation model is too complex to be evaluated analytically or even numerically, but it is still possible to sample from it by plugging in the state. The novelty is 2-fold. First, ABC methods have not been used in marginalized filtering yet. Second, a new multivariate robust method for evaluation of particle weights is proposed. The goal of this paper is to demonstrate the idea on the background of the MPF with a particular accent on exposition.

  • Název v anglickém jazyce

    Marginalized approximate filtering of state-space models

  • Popis výsledku anglicky

    The marginalized particle filtering (MPF) is a powerful technique reducing the number of particles necessary to effectively estimate hidden states of state-space models. This paper alleviates the assumption of a fully known and computationally tractable observation model. Exploiting the recent developments in the theory of approximate Bayesian computation (ABC) filtration, an ABC counterpart of MPF is proposed, applicable when the observation model is too complex to be evaluated analytically or even numerically, but it is still possible to sample from it by plugging in the state. The novelty is 2-fold. First, ABC methods have not been used in marginalized filtering yet. Second, a new multivariate robust method for evaluation of particle weights is proposed. The goal of this paper is to demonstrate the idea on the background of the MPF with a particular accent on exposition.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-09848S" target="_blank" >GA16-09848S: Racionalita a uvažování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Adaptive Control and Signal Processing

  • ISSN

    0890-6327

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000419919900001

  • EID výsledku v databázi Scopus

    2-s2.0-85030092933