Semi-supervised Bayesian Source Separation of Scintigraphic Image Sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00480504" target="_blank" >RIV/67985556:_____/18:00480504 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-68195-5_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68195-5_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68195-5_6" target="_blank" >10.1007/978-3-319-68195-5_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-supervised Bayesian Source Separation of Scintigraphic Image Sequences
Popis výsledku v původním jazyce
Many diagnostic methods using scintigraphic image sequence require decomposition of the sequence into tissue images and their time-activity curves. Standard procedure for this task is still manual selection of regions of interest (ROIs) which can be highly subjective due to their overlaps and poor signal-to-noise ratio. This can be overcome by automatic decomposition, however, the results may not have good physiological meaning. In this contribution, we aim to combine these approaches in semi-supervised procedure which is based on Bayesian blind source separation with the possibility of manual interaction after each run until an acceptable solution is obtained. The manual interaction is based on manual ROI placement and using its position to modify the corresponding prior parameters of the model. Performance of the proposed method is studied on real scintigraphic image sequence as well as on estimation of the specific diagnostic parameter on representative dataset of 10 scintigraphic sequences.
Název v anglickém jazyce
Semi-supervised Bayesian Source Separation of Scintigraphic Image Sequences
Popis výsledku anglicky
Many diagnostic methods using scintigraphic image sequence require decomposition of the sequence into tissue images and their time-activity curves. Standard procedure for this task is still manual selection of regions of interest (ROIs) which can be highly subjective due to their overlaps and poor signal-to-noise ratio. This can be overcome by automatic decomposition, however, the results may not have good physiological meaning. In this contribution, we aim to combine these approaches in semi-supervised procedure which is based on Bayesian blind source separation with the possibility of manual interaction after each run until an acceptable solution is obtained. The manual interaction is based on manual ROI placement and using its position to modify the corresponding prior parameters of the model. Performance of the proposed method is studied on real scintigraphic image sequence as well as on estimation of the specific diagnostic parameter on representative dataset of 10 scintigraphic sequences.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2017: VipIMAGE 2017)
ISBN
978-3-319-68195-5
ISSN
2212-9391
e-ISSN
2212-9413
Počet stran výsledku
10
Strana od-do
52-61
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Porto
Datum konání akce
18. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000437032100006