Automatic Regions of Interest in Factor Analysis for Dynamic Medical Imaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00376737" target="_blank" >RIV/67985556:_____/12:00376737 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Regions of Interest in Factor Analysis for Dynamic Medical Imaging
Popis výsledku v původním jazyce
Factor Analysis (FA) is a well established method for factors separation in analysis of dynamic medical imaging. However, its assumptions are valid only in limited regions of interest (ROI) in the images which must be selected manually or using heuristics. The resulting quality of separation is sensitive to the choice of these ROI. We propose a new probabilistic model for functional analysis with inherent estimation of probabilistic ROI. The model is solved using the Variational Bayes method which provides also automatic relevance determination of the estimated factors. Performance of the method is demonstrated on data from renal scintigraphy, where a significant improvement is achieved. Since there are no scintigraphy-related assumptions, the method can be used in any other imaging modality.
Název v anglickém jazyce
Automatic Regions of Interest in Factor Analysis for Dynamic Medical Imaging
Popis výsledku anglicky
Factor Analysis (FA) is a well established method for factors separation in analysis of dynamic medical imaging. However, its assumptions are valid only in limited regions of interest (ROI) in the images which must be selected manually or using heuristics. The resulting quality of separation is sensitive to the choice of these ROI. We propose a new probabilistic model for functional analysis with inherent estimation of probabilistic ROI. The model is solved using the Variational Bayes method which provides also automatic relevance determination of the estimated factors. Performance of the method is demonstrated on data from renal scintigraphy, where a significant improvement is achieved. Since there are no scintigraphy-related assumptions, the method can be used in any other imaging modality.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2012 IEEE International Symposium on Biomedical Imaging
ISBN
978-1-4577-1858-8
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
158-161
Název nakladatele
IEEE
Místo vydání
Barcelona, Spain
Místo konání akce
Barcelona
Datum konání akce
2. 5. 2012
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000312384100040