Bayesian non-negative matrix factorization with adaptive sparsity and smoothness prior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00500888" target="_blank" >RIV/67985556:_____/19:00500888 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8633424" target="_blank" >https://ieeexplore.ieee.org/document/8633424</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LSP.2019.2897230" target="_blank" >10.1109/LSP.2019.2897230</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian non-negative matrix factorization with adaptive sparsity and smoothness prior
Popis výsledku v původním jazyce
Non-negative matrix factorization (NMF) is generally an ill-posed problem which requires further regularization. Regularization of NMF using the assumption of sparsity is common as well as regularization using smoothness. In many applications it is natural to assume that both of these assumptions hold together. To avoid ad hoc combination of these assumptions using weighting coefficient, we formulate the problem using a probabilistic model and estimate it in a Bayesian way. Specifically, we use the fact that the assumptions of sparsity and smoothness are different forms of prior covariance matrix modeling. We use a generalized model that includes both sparsity and smoothness as special cases and estimate all its parameters using the variational Bayes method. The resulting matrix factorization algorithm is compared with state-of-the-art algorithms on large clinical dataset of 196 image sequences from dynamic renal scintigraphy. The proposed algorithm outperforms other algorithms in statistical evaluation.
Název v anglickém jazyce
Bayesian non-negative matrix factorization with adaptive sparsity and smoothness prior
Popis výsledku anglicky
Non-negative matrix factorization (NMF) is generally an ill-posed problem which requires further regularization. Regularization of NMF using the assumption of sparsity is common as well as regularization using smoothness. In many applications it is natural to assume that both of these assumptions hold together. To avoid ad hoc combination of these assumptions using weighting coefficient, we formulate the problem using a probabilistic model and estimate it in a Bayesian way. Specifically, we use the fact that the assumptions of sparsity and smoothness are different forms of prior covariance matrix modeling. We use a generalized model that includes both sparsity and smoothness as special cases and estimate all its parameters using the variational Bayes method. The resulting matrix factorization algorithm is compared with state-of-the-art algorithms on large clinical dataset of 196 image sequences from dynamic renal scintigraphy. The proposed algorithm outperforms other algorithms in statistical evaluation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07247S" target="_blank" >GA18-07247S: Metody a algoritmy pro analýzu obrazů vektorových a tenzorových polí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Signal Processing Letters
ISSN
1070-9908
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
510-514
Kód UT WoS článku
000458852100008
EID výsledku v databázi Scopus
2-s2.0-85061747380